A ROS Architecture for Personalised HRI with a Bartender Social Robot
- URL: http://arxiv.org/abs/2203.06631v2
- Date: Tue, 15 Mar 2022 06:20:40 GMT
- Title: A ROS Architecture for Personalised HRI with a Bartender Social Robot
- Authors: Alessandra Rossi, Maria Di Maro, Antonio Origlia, Agostino Palmiero
and Silvia Rossi
- Abstract summary: BRILLO project has the overall goal of creating an autonomous robotic bartender that can interact with customers while accomplishing its bartending tasks.
We present the developed three-layers ROS architecture integrating a perception layer managing the processing of different social signals, a decision-making layer for handling multi-party interactions, and an execution layer controlling the behaviour of a complex robot composed of arms and a face.
- Score: 61.843727637976045
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: BRILLO (Bartending Robot for Interactive Long-Lasting Operations) project has
the overall goal of creating an autonomous robotic bartender that can interact
with customers while accomplishing its bartending tasks. In such a scenario,
people's novelty effect connected to the use of an attractive technology is
destined to wear off and, consequently, it negatively affects the success of
the service robotics application. For this reason, providing personalised
natural interaction while accessing its services is of paramount importance for
increasing users' engagement and, consequently, their loyalty. In this paper,
we present the developed three-layers ROS architecture integrating a perception
layer managing the processing of different social signals, a decision-making
layer for handling multi-party interactions, and an execution layer controlling
the behaviour of a complex robot composed of arms and a face. Finally, user
modelling through a beliefs layer allows for personalised interaction.
Related papers
- ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - Nadine: An LLM-driven Intelligent Social Robot with Affective Capabilities and Human-like Memory [3.3906920519220054]
We describe our approach to developing an intelligent and robust social robotic system for the Nadine platform.
We achieve this by integrating Large Language Models (LLMs) and skilfully leveraging the powerful reasoning and instruction-following capabilities of these types of models.
This approach is novel compared to the current state-of-the-art LLM-based agents which do not implement human-like long-term memory or sophisticated emotional appraisal.
arXiv Detail & Related papers (2024-05-30T15:55:41Z) - Socially Pertinent Robots in Gerontological Healthcare [78.35311825198136]
This paper is an attempt to partially answer the question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities.
Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.
arXiv Detail & Related papers (2024-04-11T08:43:37Z) - Towards Embedding Dynamic Personas in Interactive Robots: Masquerading Animated Social Kinematics (MASK) [10.351714893090964]
This paper presents the design and development of an innovative interactive robotic system to enhance audience engagement using character-like personas.
Built upon the foundations of persona-driven dialog agents, this work extends the agent's application to the physical realm, employing robots to provide a more captivating and interactive experience.
arXiv Detail & Related papers (2024-03-15T06:22:32Z) - Modular Customizable ROS-Based Framework for Rapid Development of Social
Robots [3.6622737533847936]
We present the Socially-interactive Robot Software platform (SROS), an open-source framework addressing this need through a modular layered architecture.
Specialized perceptual and interactive skills are implemented as ROS services for reusable deployment on any robot.
We experimentally validated core SROS technologies including computer vision, speech processing, and GPT2 autocomplete speech implemented as plug-and-play ROS services.
arXiv Detail & Related papers (2023-11-27T12:54:20Z) - Who's in Charge? Roles and Responsibilities of Decision-Making
Components in Conversational Robots [3.7311680121118345]
We reflect on the organization of decision modules in human-robot interaction platforms.
We show that most practical HRI architectures tend to be either robot-centric or dialogue-centric.
We contend that architectures placing action managers'' and interaction managers'' on an equal footing may provide the best path forward for future human-robot interaction systems.
arXiv Detail & Related papers (2023-03-15T09:18:32Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
This study demonstrates a multimodal human-robot interaction (HRI) framework with reinforcement learning to enhance the robotic interaction policy.
The goal is to apply this framework in social scenarios that can let the robots generate a more natural and engaging HRI framework.
arXiv Detail & Related papers (2021-10-08T00:35:44Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - A Reference Software Architecture for Social Robots [64.86618385090416]
We propose a series of principles that social robots may benefit from.
These principles lay also the foundations for the design of a reference software architecture for Social Robots.
arXiv Detail & Related papers (2020-07-09T17:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.