Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D
Multi-Domain Liver Segmentation
- URL: http://arxiv.org/abs/2009.02831v1
- Date: Sun, 6 Sep 2020 23:48:27 GMT
- Title: Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D
Multi-Domain Liver Segmentation
- Authors: Chenyu You, Junlin Yang, Julius Chapiro, James S. Duncan
- Abstract summary: Unsupervised domain adaptation aims to improve network performance when applying robust models trained on medical images from source domains to a new target domain.
We present an approach based on the Wasserstein distance guided disentangled representation to achieve 3D multi-domain liver segmentation.
- Score: 14.639633860575621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have shown exceptional learning capability and
generalizability in the source domain when massive labeled data is provided.
However, the well-trained models often fail in the target domain due to the
domain shift. Unsupervised domain adaptation aims to improve network
performance when applying robust models trained on medical images from source
domains to a new target domain. In this work, we present an approach based on
the Wasserstein distance guided disentangled representation to achieve 3D
multi-domain liver segmentation. Concretely, we embed images onto a shared
content space capturing shared feature-level information across domains and
domain-specific appearance spaces. The existing mutual information-based
representation learning approaches often fail to capture complete
representations in multi-domain medical imaging tasks. To mitigate these
issues, we utilize Wasserstein distance to learn more complete representation,
and introduces a content discriminator to further facilitate the representation
disentanglement. Experiments demonstrate that our method outperforms the
state-of-the-art on the multi-modality liver segmentation task.
Related papers
- Unsupervised Federated Domain Adaptation for Segmentation of MRI Images [20.206972068340843]
We develop a method for unsupervised federated domain adaptation using multiple annotated source domains.
Our approach enables the transfer of knowledge from several annotated source domains to adapt a model for effective use in an unannotated target domain.
arXiv Detail & Related papers (2024-01-02T00:31:41Z) - Contrastive Domain Disentanglement for Generalizable Medical Image
Segmentation [12.863227646939563]
We propose Contrastive Disentangle Domain (CDD) network for generalizable medical image segmentation.
We first introduce a disentangle network to decompose medical images into an anatomical representation factor and a modality representation factor.
We then propose a domain augmentation strategy that can randomly generate new domains for model generalization training.
arXiv Detail & Related papers (2022-05-13T10:32:41Z) - Unsupervised Domain Generalization by Learning a Bridge Across Domains [78.855606355957]
Unsupervised Domain Generalization (UDG) setup has no training supervision in neither source nor target domains.
Our approach is based on self-supervised learning of a Bridge Across Domains (BrAD) - an auxiliary bridge domain accompanied by a set of semantics preserving visual (image-to-image) mappings to BrAD from each of the training domains.
We show how using an edge-regularized BrAD our approach achieves significant gains across multiple benchmarks and a range of tasks, including UDG, Few-shot UDA, and unsupervised generalization across multi-domain datasets.
arXiv Detail & Related papers (2021-12-04T10:25:45Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image
Segmentation on Unseen Datasets [96.92018649136217]
We present a novel Domain-oriented Feature Embedding (DoFE) framework to improve the generalization ability of CNNs on unseen target domains.
Our DoFE framework dynamically enriches the image features with additional domain prior knowledge learned from multi-source domains.
Our framework generates satisfying segmentation results on unseen datasets and surpasses other domain generalization and network regularization methods.
arXiv Detail & Related papers (2020-10-13T07:28:39Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain.
We propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains.
Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain.
arXiv Detail & Related papers (2020-08-19T13:36:57Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z) - Latent Normalizing Flows for Many-to-Many Cross-Domain Mappings [76.85673049332428]
Learned joint representations of images and text form the backbone of several important cross-domain tasks such as image captioning.
We propose a novel semi-supervised framework, which models shared information between domains and domain-specific information separately.
We demonstrate the effectiveness of our model on diverse tasks, including image captioning and text-to-image synthesis.
arXiv Detail & Related papers (2020-02-16T19:49:30Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
We propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains.
We enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information.
We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.
arXiv Detail & Related papers (2020-01-25T13:48:02Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.