DV-ConvNet: Fully Convolutional Deep Learning on Point Clouds with
Dynamic Voxelization and 3D Group Convolution
- URL: http://arxiv.org/abs/2009.02918v2
- Date: Tue, 27 Jul 2021 10:10:04 GMT
- Title: DV-ConvNet: Fully Convolutional Deep Learning on Point Clouds with
Dynamic Voxelization and 3D Group Convolution
- Authors: Zhaoyu Su, Pin Siang Tan, Junkang Chow, Jimmy Wu, Yehur Cheong,
Yu-Hsing Wang
- Abstract summary: 3D point cloud interpretation is a challenging task due to the randomness and sparsity of the component points.
In this work, we draw attention back to the standard 3D convolutions towards an efficient 3D point cloud interpretation.
Our network is able to run and converge at a considerably fast speed, while yields on-par or even better performance compared with the state-of-the-art methods on several benchmark datasets.
- Score: 0.7340017786387767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D point cloud interpretation is a challenging task due to the randomness and
sparsity of the component points. Many of the recently proposed methods like
PointNet and PointCNN have been focusing on learning shape descriptions from
point coordinates as point-wise input features, which usually involves
complicated network architectures. In this work, we draw attention back to the
standard 3D convolutions towards an efficient 3D point cloud interpretation.
Instead of converting the entire point cloud into voxel representations like
the other volumetric methods, we voxelize the sub-portions of the point cloud
only at necessary locations within each convolution layer on-the-fly, using our
dynamic voxelization operation with self-adaptive voxelization resolution. In
addition, we incorporate 3D group convolution into our dense convolution kernel
implementation to further exploit the rotation invariant features of point
cloud. Benefiting from its simple fully-convolutional architecture, our network
is able to run and converge at a considerably fast speed, while yields on-par
or even better performance compared with the state-of-the-art methods on
several benchmark datasets.
Related papers
- Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3D point cloud sequences serve as one of the most common and practical representation modalities of real-world environments.
We propose a novel generic representation called textitStructured Point Cloud Videos (SPCVs)
SPCVs re-organizes a point cloud sequence as a 2D video with spatial smoothness and temporal consistency, where the pixel values correspond to the 3D coordinates of points.
arXiv Detail & Related papers (2024-03-02T08:18:57Z) - DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets [95.84755169585492]
We present Dynamic Sparse Voxel Transformer (DSVT), a single-stride window-based voxel Transformer backbone for outdoor 3D perception.
Our model achieves state-of-the-art performance with a broad range of 3D perception tasks.
arXiv Detail & Related papers (2023-01-15T09:31:58Z) - RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds
Deep Learning [32.18566879365623]
3D point clouds deep learning is a promising field of research that allows a neural network to learn features of point clouds directly.
We propose a simple yet effective convolution operator that enhances feature distinction by designing powerful rotation invariant features from the local regions.
Our network architecture can capture both local and global context by simply tuning the neighborhood size in each convolution layer.
arXiv Detail & Related papers (2022-02-26T08:32:44Z) - Deep Point Cloud Reconstruction [74.694733918351]
Point cloud obtained from 3D scanning is often sparse, noisy, and irregular.
To cope with these issues, recent studies have been separately conducted to densify, denoise, and complete inaccurate point cloud.
We propose a deep point cloud reconstruction network consisting of two stages: 1) a 3D sparse stacked-hourglass network as for the initial densification and denoising, 2) a refinement via transformers converting the discrete voxels into 3D points.
arXiv Detail & Related papers (2021-11-23T07:53:28Z) - CpT: Convolutional Point Transformer for 3D Point Cloud Processing [10.389972581905]
We present CpT: Convolutional point Transformer - a novel deep learning architecture for dealing with the unstructured nature of 3D point cloud data.
CpT is an improvement over existing attention-based Convolutions Neural Networks as well as previous 3D point cloud processing transformers.
Our model can serve as an effective backbone for various point cloud processing tasks when compared to the existing state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-21T17:45:55Z) - DV-Det: Efficient 3D Point Cloud Object Detection with Dynamic
Voxelization [0.0]
We propose a novel two-stage framework for the efficient 3D point cloud object detection.
We parse the raw point cloud data directly in the 3D space yet achieve impressive efficiency and accuracy.
We highlight our KITTI 3D object detection dataset with 75 FPS and on Open dataset with 25 FPS inference speed with satisfactory accuracy.
arXiv Detail & Related papers (2021-07-27T10:07:39Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
Estimating 3D motions for point clouds is challenging, since a point cloud is unordered and its density is significantly non-uniform.
We propose a novel architecture named Sparse Convolution-Transformer Network (SCTN) that equips the sparse convolution with the transformer.
We show that the learned relation-based contextual information is rich and helpful for matching corresponding points, benefiting scene flow estimation.
arXiv Detail & Related papers (2021-05-10T15:16:14Z) - The Devils in the Point Clouds: Studying the Robustness of Point Cloud
Convolutions [15.997907568429177]
This paper investigates different variants of PointConv, a convolution network on point clouds, to examine their robustness to input scale and rotation changes.
We derive a novel viewpoint-invariant descriptor by utilizing 3D geometric properties as the input to PointConv.
Experiments are conducted on the 2D MNIST & CIFAR-10 datasets as well as the 3D Semantic KITTI & ScanNet dataset.
arXiv Detail & Related papers (2021-01-19T19:32:38Z) - ParaNet: Deep Regular Representation for 3D Point Clouds [62.81379889095186]
ParaNet is a novel end-to-end deep learning framework for representing 3D point clouds.
It converts an irregular 3D point cloud into a regular 2D color image, named point geometry image (PGI)
In contrast to conventional regular representation modalities based on multi-view projection and voxelization, the proposed representation is differentiable and reversible.
arXiv Detail & Related papers (2020-12-05T13:19:55Z) - Global Context Aware Convolutions for 3D Point Cloud Understanding [32.953907994511376]
We propose a novel convolution operator that enhances feature distinction by integrating global context information from the input point cloud to the convolution.
A convolution can then be performed to transform the points and anchor features into final rotation-invariant features.
arXiv Detail & Related papers (2020-08-07T04:33:27Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.