RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds
Deep Learning
- URL: http://arxiv.org/abs/2202.13094v1
- Date: Sat, 26 Feb 2022 08:32:44 GMT
- Title: RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds
Deep Learning
- Authors: Zhiyuan Zhang, Binh-Son Hua, Sai-Kit Yeung
- Abstract summary: 3D point clouds deep learning is a promising field of research that allows a neural network to learn features of point clouds directly.
We propose a simple yet effective convolution operator that enhances feature distinction by designing powerful rotation invariant features from the local regions.
Our network architecture can capture both local and global context by simply tuning the neighborhood size in each convolution layer.
- Score: 32.18566879365623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D point clouds deep learning is a promising field of research that allows a
neural network to learn features of point clouds directly, making it a robust
tool for solving 3D scene understanding tasks. While recent works show that
point cloud convolutions can be invariant to translation and point permutation,
investigations of the rotation invariance property for point cloud convolution
has been so far scarce. Some existing methods perform point cloud convolutions
with rotation-invariant features, existing methods generally do not perform as
well as translation-invariant only counterpart. In this work, we argue that a
key reason is that compared to point coordinates, rotation-invariant features
consumed by point cloud convolution are not as distinctive. To address this
problem, we propose a simple yet effective convolution operator that enhances
feature distinction by designing powerful rotation invariant features from the
local regions. We consider the relationship between the point of interest and
its neighbors as well as the internal relationship of the neighbors to largely
improve the feature descriptiveness. Our network architecture can capture both
local and global context by simply tuning the neighborhood size in each
convolution layer. We conduct several experiments on synthetic and real-world
point cloud classifications, part segmentation, and shape retrieval to evaluate
our method, which achieves the state-of-the-art accuracy under challenging
rotations.
Related papers
- Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
Estimating 3D motions for point clouds is challenging, since a point cloud is unordered and its density is significantly non-uniform.
We propose a novel architecture named Sparse Convolution-Transformer Network (SCTN) that equips the sparse convolution with the transformer.
We show that the learned relation-based contextual information is rich and helpful for matching corresponding points, benefiting scene flow estimation.
arXiv Detail & Related papers (2021-05-10T15:16:14Z) - PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features [91.2054994193218]
We propose a point-set learning framework PRIN, focusing on rotation invariant feature extraction in point clouds analysis.
In addition, we extend PRIN to a sparse version called SPRIN, which directly operates on sparse point clouds.
Results show that, on the dataset with randomly rotated point clouds, SPRIN demonstrates better performance than state-of-the-art methods without any data augmentation.
arXiv Detail & Related papers (2021-02-24T06:44:09Z) - Learning Rotation-Invariant Representations of Point Clouds Using
Aligned Edge Convolutional Neural Networks [29.3830445533532]
Point cloud analysis is an area of increasing interest due to the development of 3D sensors that are able to rapidly measure the depth of scenes accurately.
Applying deep learning techniques to perform point cloud analysis is non-trivial due to the inability of these methods to generalize to unseen rotations.
To address this limitation, one usually has to augment the training data, which can lead to extra computation and require larger model complexity.
This paper proposes a new neural network called the Aligned Edge Convolutional Neural Network (AECNN) that learns a feature representation of point clouds relative to Local Reference Frames (LRFs)
arXiv Detail & Related papers (2021-01-02T17:36:00Z) - Robust Kernel-based Feature Representation for 3D Point Cloud Analysis
via Circular Graph Convolutional Network [2.42919716430661]
We present a new local feature description method that is robust to rotation, density, and scale variations.
To improve representations of the local descriptors, we propose a global aggregation method.
Our method shows superior performances when compared to the state-of-the-art methods.
arXiv Detail & Related papers (2020-12-22T18:02:57Z) - Deep Positional and Relational Feature Learning for Rotation-Invariant
Point Cloud Analysis [107.9979381402172]
We propose a rotation-invariant deep network for point clouds analysis.
The network is hierarchical and relies on two modules: a positional feature embedding block and a relational feature embedding block.
Experiments show state-of-the-art classification and segmentation performances on benchmark datasets.
arXiv Detail & Related papers (2020-11-18T04:16:51Z) - DV-ConvNet: Fully Convolutional Deep Learning on Point Clouds with
Dynamic Voxelization and 3D Group Convolution [0.7340017786387767]
3D point cloud interpretation is a challenging task due to the randomness and sparsity of the component points.
In this work, we draw attention back to the standard 3D convolutions towards an efficient 3D point cloud interpretation.
Our network is able to run and converge at a considerably fast speed, while yields on-par or even better performance compared with the state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2020-09-07T07:45:05Z) - Global Context Aware Convolutions for 3D Point Cloud Understanding [32.953907994511376]
We propose a novel convolution operator that enhances feature distinction by integrating global context information from the input point cloud to the convolution.
A convolution can then be performed to transform the points and anchor features into final rotation-invariant features.
arXiv Detail & Related papers (2020-08-07T04:33:27Z) - A Rotation-Invariant Framework for Deep Point Cloud Analysis [132.91915346157018]
We introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs.
Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure.
We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval.
arXiv Detail & Related papers (2020-03-16T14:04:45Z) - Quaternion Equivariant Capsule Networks for 3D Point Clouds [58.566467950463306]
We present a 3D capsule module for processing point clouds that is equivariant to 3D rotations and translations.
We connect dynamic routing between capsules to the well-known Weiszfeld algorithm.
Based on our operator, we build a capsule network that disentangles geometry from pose.
arXiv Detail & Related papers (2019-12-27T13:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.