Deep Convolutional Neural Network Ensembles using ECOC
- URL: http://arxiv.org/abs/2009.02961v2
- Date: Sun, 7 Mar 2021 16:39:12 GMT
- Title: Deep Convolutional Neural Network Ensembles using ECOC
- Authors: Sara Atito Ali Ahmed, Cemre Zor, Berrin Yanikoglu, Muhammad Awais,
Josef Kittler
- Abstract summary: We analyse error correcting output coding (ECOC) framework to be used as an ensemble technique for deep networks.
We propose different design strategies to address the accuracy-complexity trade-off.
- Score: 23.29970325359036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have enhanced the performance of decision making systems
in many applications including image understanding, and further gains can be
achieved by constructing ensembles. However, designing an ensemble of deep
networks is often not very beneficial since the time needed to train the
networks is very high or the performance gain obtained is not very significant.
In this paper, we analyse error correcting output coding (ECOC) framework to be
used as an ensemble technique for deep networks and propose different design
strategies to address the accuracy-complexity trade-off. We carry out an
extensive comparative study between the introduced ECOC designs and the
state-of-the-art ensemble techniques such as ensemble averaging and gradient
boosting decision trees. Furthermore, we propose a combinatory technique which
is shown to achieve the highest classification performance amongst all.
Related papers
- Component-based Sketching for Deep ReLU Nets [55.404661149594375]
We develop a sketching scheme based on deep net components for various tasks.
We transform deep net training into a linear empirical risk minimization problem.
We show that the proposed component-based sketching provides almost optimal rates in approximating saturated functions.
arXiv Detail & Related papers (2024-09-21T15:30:43Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction [0.0]
A receptive field (ERF) and a higher resolution of spatial features within a network are essential for providing higher-resolution dense estimates.
We present a systemic approach to design network architectures that can provide a larger receptive field while maintaining a higher spatial feature resolution.
arXiv Detail & Related papers (2021-07-09T23:15:34Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Reframing Neural Networks: Deep Structure in Overcomplete
Representations [41.84502123663809]
We introduce deep frame approximation, a unifying framework for representation learning with structured overcomplete frames.
We quantify structural differences with the deep frame potential, a data-independent measure of coherence linked to representation uniqueness and stability.
This connection to the established theory of overcomplete representations suggests promising new directions for principled deep network architecture design.
arXiv Detail & Related papers (2021-03-10T01:15:14Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z) - Recursive Multi-model Complementary Deep Fusion forRobust Salient Object
Detection via Parallel Sub Networks [62.26677215668959]
Fully convolutional networks have shown outstanding performance in the salient object detection (SOD) field.
This paper proposes a wider'' network architecture which consists of parallel sub networks with totally different network architectures.
Experiments on several famous benchmarks clearly demonstrate the superior performance, good generalization, and powerful learning ability of the proposed wider framework.
arXiv Detail & Related papers (2020-08-07T10:39:11Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.