Component-based Sketching for Deep ReLU Nets
- URL: http://arxiv.org/abs/2409.14174v1
- Date: Sat, 21 Sep 2024 15:30:43 GMT
- Title: Component-based Sketching for Deep ReLU Nets
- Authors: Di Wang, Shao-Bo Lin, Deyu Meng, Feilong Cao,
- Abstract summary: We develop a sketching scheme based on deep net components for various tasks.
We transform deep net training into a linear empirical risk minimization problem.
We show that the proposed component-based sketching provides almost optimal rates in approximating saturated functions.
- Score: 55.404661149594375
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep learning has made profound impacts in the domains of data mining and AI, distinguished by the groundbreaking achievements in numerous real-world applications and the innovative algorithm design philosophy. However, it suffers from the inconsistency issue between optimization and generalization, as achieving good generalization, guided by the bias-variance trade-off principle, favors under-parameterized networks, whereas ensuring effective convergence of gradient-based algorithms demands over-parameterized networks. To address this issue, we develop a novel sketching scheme based on deep net components for various tasks. Specifically, we use deep net components with specific efficacy to build a sketching basis that embodies the advantages of deep networks. Subsequently, we transform deep net training into a linear empirical risk minimization problem based on the constructed basis, successfully avoiding the complicated convergence analysis of iterative algorithms. The efficacy of the proposed component-based sketching is validated through both theoretical analysis and numerical experiments. Theoretically, we show that the proposed component-based sketching provides almost optimal rates in approximating saturated functions for shallow nets and also achieves almost optimal generalization error bounds. Numerically, we demonstrate that, compared with the existing gradient-based training methods, component-based sketching possesses superior generalization performance with reduced training costs.
Related papers
- Deep Learning Meets Adaptive Filtering: A Stein's Unbiased Risk
Estimator Approach [13.887632153924512]
We introduce task-based deep learning frameworks, denoted as Deep RLS and Deep EASI.
These architectures transform the iterations of the original algorithms into layers of a deep neural network, enabling efficient source signal estimation.
To further enhance performance, we propose training these deep unrolled networks utilizing a surrogate loss function grounded on Stein's unbiased risk estimator (SURE)
arXiv Detail & Related papers (2023-07-31T14:26:41Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
We propose a new deep learning framework for the low-light image enhancement (LIE) problem.
The proposed framework contains a decomposition network inspired by algorithm unrolling, and adjustment networks considering both global brightness and local brightness sensitivity.
Experiments on a series of typical LIE datasets demonstrated the effectiveness of the proposed method, both quantitatively and visually, as compared with existing methods.
arXiv Detail & Related papers (2022-02-12T03:59:38Z) - Subquadratic Overparameterization for Shallow Neural Networks [60.721751363271146]
We provide an analytical framework that allows us to adopt standard neural training strategies.
We achieve the desiderata viaak-Lojasiewicz, smoothness, and standard assumptions.
arXiv Detail & Related papers (2021-11-02T20:24:01Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - Initialization and Regularization of Factorized Neural Layers [23.875225732697142]
We show how to initialize and regularize Factorized layers in deep nets.
We show how these schemes lead to improved performance on both translation and unsupervised pre-training.
arXiv Detail & Related papers (2021-05-03T17:28:07Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - An Elementary Approach to Convergence Guarantees of Optimization
Algorithms for Deep Networks [2.715884199292287]
We present an approach to obtain convergence guarantees of optimization algorithms for deep networks based on oracle elementary arguments and computations.
We provide a systematic way to compute estimates of the smoothness constants that govern the convergence behavior of first-order optimization algorithms used to train deep networks.
arXiv Detail & Related papers (2020-02-20T22:40:52Z) - Distance-Based Regularisation of Deep Networks for Fine-Tuning [116.71288796019809]
We develop an algorithm that constrains a hypothesis class to a small sphere centred on the initial pre-trained weights.
Empirical evaluation shows that our algorithm works well, corroborating our theoretical results.
arXiv Detail & Related papers (2020-02-19T16:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.