Improved Modeling of 3D Shapes with Multi-view Depth Maps
- URL: http://arxiv.org/abs/2009.03298v1
- Date: Mon, 7 Sep 2020 17:58:27 GMT
- Title: Improved Modeling of 3D Shapes with Multi-view Depth Maps
- Authors: Kamal Gupta and Susmija Jabbireddy and Ketul Shah and Abhinav
Shrivastava and Matthias Zwicker
- Abstract summary: We present a general-purpose framework for modeling 3D shapes using CNNs.
Using just a single depth image of the object, we can output a dense multi-view depth map representation of 3D objects.
- Score: 48.8309897766904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a simple yet effective general-purpose framework for modeling 3D
shapes by leveraging recent advances in 2D image generation using CNNs. Using
just a single depth image of the object, we can output a dense multi-view depth
map representation of 3D objects. Our simple encoder-decoder framework,
comprised of a novel identity encoder and class-conditional viewpoint
generator, generates 3D consistent depth maps. Our experimental results
demonstrate the two-fold advantage of our approach. First, we can directly
borrow architectures that work well in the 2D image domain to 3D. Second, we
can effectively generate high-resolution 3D shapes with low computational
memory. Our quantitative evaluations show that our method is superior to
existing depth map methods for reconstructing and synthesizing 3D objects and
is competitive with other representations, such as point clouds, voxel grids,
and implicit functions.
Related papers
- GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images.
Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data.
We introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes.
arXiv Detail & Related papers (2024-05-24T15:09:12Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
We propose a novel method to convert 3D shapes into compact 1-channel geometry images and leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in 2D space.
The generated geometry images are quick to convert to 3D meshes, enabling real-time 3D object synthesis, visualization and interactive editing.
We show both quantitatively and qualitatively that our method is highly effective at various tasks such as 3D shape generation, single view reconstruction and shape manipulation, while being significantly faster and more flexible compared to recent 3D generative models.
arXiv Detail & Related papers (2022-10-06T15:54:01Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
We propose a unified multi-view cross-modal distillation architecture, including a pretrained deep image encoder as the teacher and a deep point encoder as the student.
By pair-wise aligning multi-view visual and geometric descriptors, we can obtain more powerful deep point encoders without exhausting and complicated network modification.
arXiv Detail & Related papers (2022-07-07T07:23:20Z) - Voxel-based 3D Detection and Reconstruction of Multiple Objects from a
Single Image [22.037472446683765]
We learn a regular grid of 3D voxel features from the input image which is aligned with 3D scene space via a 3D feature lifting operator.
Based on the 3D voxel features, our novel CenterNet-3D detection head formulates the 3D detection as keypoint detection in the 3D space.
We devise an efficient coarse-to-fine reconstruction module, including coarse-level voxelization and a novel local PCA-SDF shape representation.
arXiv Detail & Related papers (2021-11-04T18:30:37Z) - Fully Understanding Generic Objects: Modeling, Segmentation, and
Reconstruction [33.95791350070165]
Inferring 3D structure of a generic object from a 2D image is a long-standing objective of computer vision.
We take an alternative approach with semi-supervised learning. That is, for a 2D image of a generic object, we decompose it into latent representations of category, shape and albedo.
We show that the complete shape and albedo modeling enables us to leverage real 2D images in both modeling and model fitting.
arXiv Detail & Related papers (2021-04-02T02:39:29Z) - Convolutional Generation of Textured 3D Meshes [34.20939983046376]
We propose a framework that can generate triangle meshes and associated high-resolution texture maps, using only 2D supervision from single-view natural images.
A key contribution of our work is the encoding of the mesh and texture as 2D representations, which are semantically aligned and can be easily modeled by a 2D convolutional GAN.
We demonstrate the efficacy of our method on Pascal3D+ Cars and CUB, both in an unconditional setting and in settings where the model is conditioned on class labels, attributes, and text.
arXiv Detail & Related papers (2020-06-13T15:23:29Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.