Approximate Multiplication of Sparse Matrices with Limited Space
- URL: http://arxiv.org/abs/2009.03527v2
- Date: Sun, 23 Jun 2024 17:11:19 GMT
- Title: Approximate Multiplication of Sparse Matrices with Limited Space
- Authors: Yuanyu Wan, Lijun Zhang,
- Abstract summary: We develop sparse co-occuring directions, which reduces the time complexity to $widetildeOleft((nnz(X)+nnz(Y))ell+nell2right)$ in expectation.
Theoretical analysis reveals that the approximation error of our algorithm is almost the same as that of COD.
- Score: 24.517908972536432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximate matrix multiplication with limited space has received ever-increasing attention due to the emergence of large-scale applications. Recently, based on a popular matrix sketching algorithm -- frequent directions, previous work has introduced co-occuring directions (COD) to reduce the approximation error for this problem. Although it enjoys the space complexity of $O((m_x+m_y)\ell)$ for two input matrices $X\in\mathbb{R}^{m_x\times n}$ and $Y\in\mathbb{R}^{m_y\times n}$ where $\ell$ is the sketch size, its time complexity is $O\left(n(m_x+m_y+\ell)\ell\right)$, which is still very high for large input matrices. In this paper, we propose to reduce the time complexity by exploiting the sparsity of the input matrices. The key idea is to employ an approximate singular value decomposition (SVD) method which can utilize the sparsity, to reduce the number of QR decompositions required by COD. In this way, we develop sparse co-occuring directions, which reduces the time complexity to $\widetilde{O}\left((\nnz(X)+\nnz(Y))\ell+n\ell^2\right)$ in expectation while keeps the same space complexity as $O((m_x+m_y)\ell)$, where $\nnz(X)$ denotes the number of non-zero entries in $X$ and the $\widetilde{O}$ notation hides constant factors as well as polylogarithmic factors. Theoretical analysis reveals that the approximation error of our algorithm is almost the same as that of COD. Furthermore, we empirically verify the efficiency and effectiveness of our algorithm.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Fine-grained Analysis and Faster Algorithms for Iteratively Solving Linear Systems [9.30306458153248]
We consider the spectral tail condition number, $kappa_ell$, defined as the ratio between the $ell$th largest and the smallest singular value of the matrix representing the system.
Some of the implications of our result, and of the use of $kappa_ell$, include direct improvement over a fine-grained analysis of the Conjugate method.
arXiv Detail & Related papers (2024-05-09T14:56:49Z) - Solving Dense Linear Systems Faster Than via Preconditioning [1.8854491183340518]
We show that our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
In particular, our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
Our main algorithm can be viewed as a randomized block coordinate descent method.
arXiv Detail & Related papers (2023-12-14T12:53:34Z) - How to Capture Higher-order Correlations? Generalizing Matrix Softmax
Attention to Kronecker Computation [12.853829771559916]
We study a generalization of attention which captures triple-wise correlations.
This generalization is able to solve problems about detecting triple-wise connections that were shown to be impossible for transformers.
We show that our construction, algorithms, and lower bounds naturally generalize to higher-order tensors and correlations.
arXiv Detail & Related papers (2023-10-06T07:42:39Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - The Complexity of Dynamic Least-Squares Regression [11.815510373329337]
complexity of dynamic least-squares regression.
Goal is to maintain an $epsilon-approximate solution to $min_mathbfx(t)| mathbfA(t) mathbfb(t) |$ for all $tin.
arXiv Detail & Related papers (2022-01-01T18:36:17Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.