Quantum Algorithms for Projection-Free Sparse Convex Optimization
- URL: http://arxiv.org/abs/2507.08543v1
- Date: Fri, 11 Jul 2025 12:43:58 GMT
- Title: Quantum Algorithms for Projection-Free Sparse Convex Optimization
- Authors: Jianhao He, John C. S. Lui,
- Abstract summary: For the vector domain, we propose two quantum algorithms for sparse constraints that find a $varepsilon$-optimal solution with the query complexity of $O(sqrtd/varepsilon)$.<n>For the matrix domain, we propose two quantum algorithms for nuclear norm constraints that improve the time complexity to $tildeO(rd/varepsilon2)$ and $tildeO(sqrtrd/varepsilon3)$.
- Score: 32.34794896079469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the projection-free sparse convex optimization problem for the vector domain and the matrix domain, which covers a large number of important applications in machine learning and data science. For the vector domain $\mathcal{D} \subset \mathbb{R}^d$, we propose two quantum algorithms for sparse constraints that finds a $\varepsilon$-optimal solution with the query complexity of $O(\sqrt{d}/\varepsilon)$ and $O(1/\varepsilon)$ by using the function value oracle, reducing a factor of $O(\sqrt{d})$ and $O(d)$ over the best classical algorithm, respectively, where $d$ is the dimension. For the matrix domain $\mathcal{D} \subset \mathbb{R}^{d\times d}$, we propose two quantum algorithms for nuclear norm constraints that improve the time complexity to $\tilde{O}(rd/\varepsilon^2)$ and $\tilde{O}(\sqrt{r}d/\varepsilon^3)$ for computing the update step, reducing at least a factor of $O(\sqrt{d})$ over the best classical algorithm, where $r$ is the rank of the gradient matrix. Our algorithms show quantum advantages in projection-free sparse convex optimization problems as they outperform the optimal classical methods in dependence on the dimension $d$.
Related papers
- Fast Convex Optimization with Quantum Gradient Methods [2.5094874597551913]
We study quantum algorithms based on quantum (sub)gradient estimation using noisy function evaluation oracles.<n>We demonstrate the first dimension-independent query complexities for zeroth-order convex optimization in both smooth and nonsmooth settings.<n>By leveraging a connection between semidefinite programming and eigenvalue optimization, we use our quantum mirror descent method to give a new quantum algorithm for solving semidefinite programs, linear programs, and zero-sum games.
arXiv Detail & Related papers (2025-03-21T17:58:12Z) - Quantum Algorithms for Non-smooth Non-convex Optimization [30.576546266390714]
This paper considers the problem for finding the $(,epsilon)$-Goldstein stationary point of Lipschitz continuous objective.
We construct a zeroth-order quantum estimator for the surrogate oracle function.
arXiv Detail & Related papers (2024-10-21T16:52:26Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - A quantum central path algorithm for linear optimization [5.450016817940232]
We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path.
This approach yields an algorithm for solving linear optimization problems involving $m$ constraints and $n$ variables to $varepsilon$-optimality.
In the standard gate model (i.e., without access to quantum RAM), our algorithm can obtain highly-precise solutions to LO problems using at most $$mathcalO left( sqrtm + n textsfnnz (A) fracR_1
arXiv Detail & Related papers (2023-11-07T13:26:20Z) - Do you know what q-means? [42.96240569413475]
We present a classical $varepsilon$-$k$-means algorithm that performs an approximate version of one iteration of Lloyd's algorithm with time complexity.<n>We also propose an improved $q$-means quantum algorithm with time complexity.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Quantum algorithms for matrix scaling and matrix balancing [9.010461408997646]
Matrix scaling and matrix balancing are two basic linear-algebraic problems with a wide variety of applications.
We study the power and limitations of quantum algorithms for these problems.
We provide quantum implementations of two classical methods: Sinkhorn's algorithm for matrix scaling and Osborne's algorithm for matrix balancing.
arXiv Detail & Related papers (2020-11-25T15:26:59Z) - No quantum speedup over gradient descent for non-smooth convex
optimization [22.16973542453584]
Black-box access to a (not necessarily smooth) function $f:mathbbRn to mathbbR$ and its (sub)gradient.
Our goal is to find an $epsilon$-approximate minimum of $f$ starting from a point that is distance at most $R$ from the true minimum.
We show that although the function family used in the lower bound is hard for randomized algorithms, it can be solved using $O(GR/epsilon)$ quantum queries.
arXiv Detail & Related papers (2020-10-05T06:32:47Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Improved quantum algorithm for A-optimal projection [4.248054546466641]
This paper corrects the time complexity of Duan emphet al.'s algorithm to $(frackappa4ssqrtks epsilonsmathrmpolylog)$.
Our algorithm achieves at least a speedup compared to Duan emphet al.'s algorithm.
arXiv Detail & Related papers (2020-06-10T09:31:53Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.