Quantum Algorithm for a Convergent Series of Approximations towards the
Exact Solution of the Lowest Eigenstates of a Hamiltonian
- URL: http://arxiv.org/abs/2009.03537v1
- Date: Tue, 8 Sep 2020 06:16:07 GMT
- Title: Quantum Algorithm for a Convergent Series of Approximations towards the
Exact Solution of the Lowest Eigenstates of a Hamiltonian
- Authors: Zhiyong Zhang
- Abstract summary: We present quantum algorithms for Hamiltonians of linear combinations of local unitary operators.
The algorithms implement a convergent series of approximations towards the exact solution of the full CI (configuration interaction) problem.
- Score: 1.8895156959295205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present quantum algorithms, for Hamiltonians of linear combinations of
local unitary operators, for Hamiltonian matrix-vector products and for
preconditioning with the inverse of shifted reduced Hamiltonian operator that
contributes to the diagonal matrix elements only. The algorithms implement a
convergent series of approximations towards the exact solution of the full CI
(configuration interaction) problem. The algorithm scales with O(m^5 ), with m
the number of one-electron orbitals in the case of molecular electronic
structure calculations. Full CI results can be obtained with a scaling of
O(nm^5 ), with n the number of electrons and a prefactor on the order of 10 to
20. With low orders of Hamiltonian matrix-vector products, a whole repertoire
of approximations widely used in modern electronic structure theory, including
various orders of perturbation theory and/or truncated CI at different orders
of excitations can be implemented for quantum computing for both routine and
benchmark results at chemical accuracy. The lowest order matrix-vector product
with preconditioning, basically the second-order perturbation theory, is
expected to be a leading algorithm for demonstrating quantum supremacy for Ab
Initio simulations, one of the most anticipated real world applications. The
algorithm is also applicable for the hybrid variational quantum eigensolver.
Related papers
- Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Tensor Factorized Recursive Hamiltonian Downfolding To Optimize The Scaling Complexity Of The Electronic Correlations Problem on Classical and Quantum Computers [0.15833270109954137]
We present a new variant of post-Hartree-Fock Hamiltonian downfolding-based quantum chemistry methods with optimized scaling for high-cost simulations.
We demonstrate super-quadratic speedups of expensive quantum chemistry algorithms on both classical and quantum computers.
arXiv Detail & Related papers (2023-03-13T12:15:54Z) - Preentangling Quantum Algorithms -- the Density Matrix Renormalization
Group-assisted Quantum Canonical Transformation [0.0]
We propose the use of parameter-free preentanglers as initial states for quantum algorithms.
We find this strategy to require significantly less parameters than corresponding generalized unitary coupled cluster circuits.
arXiv Detail & Related papers (2022-09-15T07:35:21Z) - Ground state preparation and energy estimation on early fault-tolerant
quantum computers via quantum eigenvalue transformation of unitary matrices [3.1952399274829775]
We develop a tool called quantum eigenvalue transformation of unitary matrices with reals (QET-U)
This leads to a simple quantum algorithm that outperforms all previous algorithms with a comparable circuit structure for estimating the ground state energy.
We demonstrate the performance of the algorithm using IBM Qiskit for the transverse field Ising model.
arXiv Detail & Related papers (2022-04-12T17:11:40Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Orbital transformations to reduce the 1-norm of the electronic structure
Hamiltonian for quantum computing applications [0.0]
We investigate the effect of classical pre-optimization of the electronic structure Hamiltonian representation, via single-particle basis transformation, on the "1-norm"
We derive a new formula for the 1-norm as a function of the electronic integrals, and use this quantity as a cost function for an orbital-optimization scheme.
arXiv Detail & Related papers (2021-03-26T22:05:42Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.