Enhancing the Interpretability of Deep Models in Heathcare Through
Attention: Application to Glucose Forecasting for Diabetic People
- URL: http://arxiv.org/abs/2009.03732v1
- Date: Tue, 8 Sep 2020 13:27:52 GMT
- Title: Enhancing the Interpretability of Deep Models in Heathcare Through
Attention: Application to Glucose Forecasting for Diabetic People
- Authors: Maxime De Bois, Moun\^im A. El Yacoubi, Mehdi Ammi
- Abstract summary: We evaluate the RETAIN model on the type-2 IDIAB and the type-1 OhioT1DM datasets.
We show that the RETAIN model offers a very good compromise between accuracy and interpretability.
- Score: 4.692400531340393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The adoption of deep learning in healthcare is hindered by their "black box"
nature. In this paper, we explore the RETAIN architecture for the task of
glusose forecasting for diabetic people. By using a two-level attention
mechanism, the recurrent-neural-network-based RETAIN model is interpretable. We
evaluate the RETAIN model on the type-2 IDIAB and the type-1 OhioT1DM datasets
by comparing its statistical and clinical performances against two deep models
and three models based on decision trees. We show that the RETAIN model offers
a very good compromise between accuracy and interpretability, being almost as
accurate as the LSTM and FCN models while remaining interpretable. We show the
usefulness of its interpretable nature by analyzing the contribution of each
variable to the final prediction. It revealed that signal values older than one
hour are not used by the RETAIN model for the 30-minutes ahead of time
prediction of glucose. Also, we show how the RETAIN model changes its behavior
upon the arrival of an event such as carbohydrate intakes or insulin infusions.
In particular, it showed that the patient's state before the event is
particularily important for the prediction. Overall the RETAIN model, thanks to
its interpretability, seems to be a very promissing model for regression or
classification tasks in healthcare.
Related papers
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Deep Personalized Glucose Level Forecasting Using Attention-based
Recurrent Neural Networks [5.250950284616893]
We study the problem of blood glucose forecasting and provide a deep personalized solution.
We analyze the data and detect important patterns.
We empirically show the efficacy of our model on a real dataset.
arXiv Detail & Related papers (2021-06-02T01:36:53Z) - IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction [47.999621481852266]
We propose an interpretable graph learning-based model which interprets the clinical relevance of the input features towards the task.
In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning.
Our proposed model shows superior performance with respect to compared methods with an increase in an average accuracy of 3.2% for Tadpole, 1.6% for UKBB Gender, and 2% for the UKBB Age prediction task.
arXiv Detail & Related papers (2021-03-29T13:04:02Z) - EventScore: An Automated Real-time Early Warning Score for Clinical
Events [3.3039612529376625]
We build an interpretable model for the early prediction of various adverse clinical events indicative of clinical deterioration.
The model is evaluated on two datasets and four clinical events.
Our model can be entirely automated without requiring any manually recorded features.
arXiv Detail & Related papers (2021-02-11T11:55:08Z) - Interpreting Deep Glucose Predictive Models for Diabetic People Using
RETAIN [4.692400531340393]
We study the RETAIN architecture for the forecasting of future glucose values for diabetic people.
Thanks to its two-level attention mechanism, the RETAIN model is interpretable while remaining as efficient as standard neural networks.
arXiv Detail & Related papers (2020-09-08T13:20:15Z) - Prediction-Coherent LSTM-based Recurrent Neural Network for Safer
Glucose Predictions in Diabetic People [4.692400531340393]
We propose a LSTM-based recurrent neural network architecture and loss function that enhance the stability of predictions.
The study is conducted on type 1 and type 2 diabetic people, with a focus on predictions made 30-minutes ahead of time.
arXiv Detail & Related papers (2020-09-08T13:14:08Z) - GLYFE: Review and Benchmark of Personalized Glucose Predictive Models in
Type-1 Diabetes [4.17510581764131]
GLYFE is a benchmark of machine-learning-based glucose-predictive models.
The results of nine different models coming from the glucose-prediction literature are presented.
arXiv Detail & Related papers (2020-06-29T11:34:41Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.