IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction
- URL: http://arxiv.org/abs/2103.15587v1
- Date: Mon, 29 Mar 2021 13:04:02 GMT
- Title: IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction
- Authors: Anees Kazi, Soroush Farghadani, Nassir Navab
- Abstract summary: We propose an interpretable graph learning-based model which interprets the clinical relevance of the input features towards the task.
In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning.
Our proposed model shows superior performance with respect to compared methods with an increase in an average accuracy of 3.2% for Tadpole, 1.6% for UKBB Gender, and 2% for the UKBB Age prediction task.
- Score: 47.999621481852266
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Interpretability in Graph Convolutional Networks (GCNs) has been explored to
some extent in computer vision in general, yet, in the medical domain, it
requires further examination. Moreover, most of the interpretability approaches
for GCNs, especially in the medical domain, focus on interpreting the model in
a post hoc fashion. In this paper, we propose an interpretable graph
learning-based model which 1) interprets the clinical relevance of the input
features towards the task, 2) uses the explanation to improve the model
performance and, 3) learns a population level latent graph that may be used to
interpret the cohort's behavior. In a clinical scenario, such a model can
assist the clinical experts in better decision-making for diagnosis and
treatment planning. The main novelty lies in the interpretable attention module
(IAM), which directly operates on multi-modal features. Our IAM learns the
attention for each feature based on the unique interpretability-specific
losses. We show the application on two publicly available datasets, Tadpole and
UKBB, for three tasks of disease, age, and gender prediction. Our proposed
model shows superior performance with respect to compared methods with an
increase in an average accuracy of 3.2% for Tadpole, 1.6% for UKBB Gender, and
2% for the UKBB Age prediction task. Further, we show exhaustive validation and
clinical interpretation of our results.
Related papers
- Semi-Supervised Graph Representation Learning with Human-centric
Explanation for Predicting Fatty Liver Disease [2.992602379681373]
This study explores the potential of graph representation learning within a semi-supervised learning framework.
Our approach constructs a subject similarity graph to identify risk patterns from health checkup data.
arXiv Detail & Related papers (2024-03-05T08:59:45Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
In clinical practice such models must not only be accurate, but provide doctors with interpretable and helpful results.
We introduce ProtoPatient, a novel method based on prototypical networks and label-wise attention.
We evaluate the model on two publicly available clinical datasets and show that it outperforms existing baselines.
arXiv Detail & Related papers (2022-10-16T10:12:07Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Risk of Training Diagnostic Algorithms on Data with Demographic Bias [0.5599792629509227]
We conduct a survey of the MICCAI 2018 proceedings to investigate the common practice in medical image analysis applications.
Surprisingly, we found that papers focusing on diagnosis rarely describe the demographics of the datasets used.
We show that it is possible to learn unbiased features by explicitly using demographic variables in an adversarial training setup.
arXiv Detail & Related papers (2020-05-20T13:51:01Z) - Latent-Graph Learning for Disease Prediction [44.26665239213658]
We show that it is possible to learn a single, optimal graph towards the GCN's downstream task of disease classification.
Unlike commonly employed spectral GCN approaches, our GCN is spatial and inductive, and can thus infer previously unseen patients as well.
arXiv Detail & Related papers (2020-03-27T08:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.