DCTRGAN: Improving the Precision of Generative Models with Reweighting
- URL: http://arxiv.org/abs/2009.03796v1
- Date: Thu, 3 Sep 2020 18:00:27 GMT
- Title: DCTRGAN: Improving the Precision of Generative Models with Reweighting
- Authors: Sascha Diefenbacher, Engin Eren, Gregor Kasieczka, Anatolii Korol,
Benjamin Nachman, and David Shih
- Abstract summary: We introduce a post-hoc correction to deep generative models to further improve their fidelity.
The correction takes the form of a reweighting function that can be applied to generated examples.
We show that the weighted GAN examples significantly improve the accuracy of the generated samples without a large loss in statistical power.
- Score: 1.2622634782102324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant advances in deep learning have led to more widely used and
precise neural network-based generative models such as Generative Adversarial
Networks (GANs). We introduce a post-hoc correction to deep generative models
to further improve their fidelity, based on the Deep neural networks using the
Classification for Tuning and Reweighting (DCTR) protocol. The correction takes
the form of a reweighting function that can be applied to generated examples
when making predictions from the simulation. We illustrate this approach using
GANs trained on standard multimodal probability densities as well as
calorimeter simulations from high energy physics. We show that the weighted GAN
examples significantly improve the accuracy of the generated samples without a
large loss in statistical power. This approach could be applied to any
generative model and is a promising refinement method for high energy physics
applications and beyond.
Related papers
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - Efficient Frequency Selective Surface Analysis via End-to-End Model-Based Learning [2.66269503676104]
This paper introduces an innovative end-to-end model-based deep learning approach for efficient electromagnetic analysis of high-dimensional frequency selective surfaces (FSS)
Unlike traditional data-driven methods that require large datasets, this approach combines physical insights from equivalent circuit models with deep learning techniques to significantly reduce model complexity and enhance prediction accuracy.
arXiv Detail & Related papers (2024-10-22T07:27:20Z) - Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
We propose a unified and massively scalable Neural Residual Diffusion Models framework (Neural-RDM)
The proposed neural residual models obtain state-of-the-art scores on image's and video's generative benchmarks.
arXiv Detail & Related papers (2024-06-19T04:57:18Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Differential Evolution Algorithm based Hyper-Parameters Selection of
Transformer Neural Network Model for Load Forecasting [0.0]
Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism.
Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-07-28T04:29:53Z) - Accurate generation of stochastic dynamics based on multi-model
Generative Adversarial Networks [0.0]
Generative Adversarial Networks (GANs) have shown immense potential in fields such as text and image generation.
Here we quantitatively test this approach by applying it to a prototypical process on a lattice.
Importantly, the discreteness of the model is retained despite the noise.
arXiv Detail & Related papers (2023-05-25T10:41:02Z) - Effective Dynamics of Generative Adversarial Networks [16.51305515824504]
Generative adversarial networks (GANs) are a class of machine-learning models that use adversarial training to generate new samples.
One major form of training failure, known as mode collapse, involves the generator failing to reproduce the full diversity of modes in the target probability distribution.
We present an effective model of GAN training, which captures the learning dynamics by replacing the generator neural network with a collection of particles in the output space.
arXiv Detail & Related papers (2022-12-08T22:04:01Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Neural networks with late-phase weights [66.72777753269658]
We show that the solutions found by SGD can be further improved by ensembling a subset of the weights in late stages of learning.
At the end of learning, we obtain back a single model by taking a spatial average in weight space.
arXiv Detail & Related papers (2020-07-25T13:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.