論文の概要: Probabilistic Predictions of People Perusing: Evaluating Metrics of
Language Model Performance for Psycholinguistic Modeling
- arxiv url: http://arxiv.org/abs/2009.03954v1
- Date: Tue, 8 Sep 2020 19:12:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 20:26:52.049390
- Title: Probabilistic Predictions of People Perusing: Evaluating Metrics of
Language Model Performance for Psycholinguistic Modeling
- Title(参考訳): 使用者の確率的予測--心理言語モデルにおける言語モデル性能の指標評価
- Authors: Yiding Hao, Simon Mendelsohn, Rachel Sterneck, Randi Martinez, Robert
Frank
- Abstract要約: 我々は、Goodkind と Bicknell による主張を再評価し、言語モデルが読み出し時間をモデル化する能力は、その難易度の線形関数であると主張した。
提案手法は,Long Short-Term Memory Network, Transformer, および事前学習モデルに必ずしも適用されないことを示す。
- 参考スコア(独自算出の注目度): 0.8668211481067458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By positing a relationship between naturalistic reading times and
information-theoretic surprisal, surprisal theory (Hale, 2001; Levy, 2008)
provides a natural interface between language models and psycholinguistic
models. This paper re-evaluates a claim due to Goodkind and Bicknell (2018)
that a language model's ability to model reading times is a linear function of
its perplexity. By extending Goodkind and Bicknell's analysis to modern neural
architectures, we show that the proposed relation does not always hold for Long
Short-Term Memory networks, Transformers, and pre-trained models. We introduce
an alternate measure of language modeling performance called predictability
norm correlation based on Cloze probabilities measured from human subjects. Our
new metric yields a more robust relationship between language model quality and
psycholinguistic modeling performance that allows for comparison between models
with different training configurations.
- Abstract(参考訳): 自然主義的読解時間と情報理論的超越の関係を仮定することで、超越理論(hale, 2001; levy, 2008)は言語モデルと精神言語モデルの間の自然なインターフェイスを提供する。
本論文は,goodkind と bicknell (2018) による言語モデルの可読時間のモデル化能力がパープレキシティの線形関数であるという主張を再評価する。
グッドキンドとビックネルの分析を現代のニューラルアーキテクチャに拡張することにより、提案された関係が常に長期記憶ネットワーク、トランスフォーマー、事前訓練されたモデルで成り立つとは限らないことを示す。
本稿では,人間の被験者から測定したクローズ確率に基づく予測可能性規範相関と呼ばれる言語モデル性能の代替尺度を提案する。
我々の新しい指標は、言語モデルの品質と心理言語モデルのパフォーマンスのより堅牢な関係をもたらし、異なるトレーニング構成のモデルの比較を可能にします。
関連論文リスト
- Reverse-Engineering the Reader [43.26660964074272]
本稿では,線形回帰器のパラメータを暗黙的に最適化するために,言語モデルを微調整する新しいアライメント手法を提案する。
単語をテストケースとして使用し、複数のモデルサイズとデータセットにわたる手法を評価する。
ダウンストリームNLPタスクにおける心理測定パワーとモデルの性能の逆関係と、ホールドアウトテストデータにおけるその難易度を見出した。
論文 参考訳(メタデータ) (2024-10-16T23:05:01Z) - A Probability--Quality Trade-off in Aligned Language Models and its Relation to Sampling Adaptors [50.046717886067555]
一致した言語モデルからコーパスをサンプリングする場合,文字列の平均報酬と平均ログ類似度との間にはトレードオフが存在することを示す。
我々は、この現象を形式的に処理し、サンプリングアダプタの選択が、どれだけの確率で報酬を交換できるかを選択できるかを実証する。
論文 参考訳(メタデータ) (2024-06-14T17:38:21Z) - Transformer-Based Language Model Surprisal Predicts Human Reading Times
Best with About Two Billion Training Tokens [17.80735287413141]
本研究では,トランスフォーマーをベースとした言語モデル変種から,人間の読解時間を予測する能力に基づいて推定した推定値について検討した。
その結果、現代のモデル能力を持つほとんどの変種からの推定は、約20億のトレーニングトークンを見た後、最も適していることがわかった。
新たに訓練されたより小さなモデル変種は収束時に「転換点」を示し、その後言語モデルの難易度が低下し始め、人間の読解時間に適合する。
論文 参考訳(メタデータ) (2023-04-22T12:50:49Z) - Black-box language model explanation by context length probing [7.526153863886609]
本稿では、因果言語モデルのための新しい説明手法である文脈長探索について述べる。
この技術はモデルに依存しず、トークンレベルの確率の計算以上のモデル内部へのアクセスに依存しない。
事前学習された大規模言語モデルに文脈長探索を適用し、初期分析と洞察を提供する。
論文 参考訳(メタデータ) (2022-12-30T16:24:10Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - Scaling Language Models: Methods, Analysis & Insights from Training
Gopher [83.98181046650664]
本稿では,トランスフォーマーに基づく言語モデルの性能を,幅広いモデルスケールで解析する。
スケールからのゲインは、理解、事実確認、有害言語の同定などにおいて最大である。
我々は、AIの安全性と下流の害の軽減に対する言語モデルの適用について論じる。
論文 参考訳(メタデータ) (2021-12-08T19:41:47Z) - Language Model Evaluation Beyond Perplexity [47.268323020210175]
我々は、言語モデルから生成されたテキストが、訓練された人為的なテキストに存在する統計的傾向を示すかどうかを分析する。
ニューラルネットワークモデルは、考慮された傾向のサブセットのみを学習しているように見えるが、提案された理論分布よりも経験的傾向とより密接に一致している。
論文 参考訳(メタデータ) (2021-05-31T20:13:44Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Multi-timescale Representation Learning in LSTM Language Models [69.98840820213937]
言語モデルは、非常に短いから非常に長いまでの時間スケールで単語間の統計的依存関係を捉えなければならない。
我々は、長期記憶言語モデルにおけるメモリゲーティング機構が、パワーローの減衰を捉えることができるかの理論を導出した。
実験の結果,自然言語で学習したLSTM言語モデルは,この理論分布を近似することがわかった。
論文 参考訳(メタデータ) (2020-09-27T02:13:38Z) - On the Predictive Power of Neural Language Models for Human Real-Time
Comprehension Behavior [29.260666424382446]
我々は、自然言語テキストコーパスにおいて、その次の単語の予測が人間の読書時間をどのように予測するかを、2ダース以上のモデルで検証する。
これらのモデルの特徴が、その心理測定的予測能力や、人間の読書行動を予測する能力をどのように決定するかを評価する。
任意の難易度に対して、ディープトランスフォーマーモデルとn-gramモデルはLSTMや構造的に制御されたニューラルモデルよりも優れた心理測定予測力を示す。
論文 参考訳(メタデータ) (2020-06-02T19:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。