Semi-supervised Medical Image Segmentation through Dual-task Consistency
- URL: http://arxiv.org/abs/2009.04448v3
- Date: Sat, 6 May 2023 06:36:37 GMT
- Title: Semi-supervised Medical Image Segmentation through Dual-task Consistency
- Authors: Xiangde Luo, Jieneng Chen, Tao Song, Yinan Chen, Guotai Wang, Shaoting
Zhang
- Abstract summary: We propose a novel dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target.
Our method can largely improve the performance by incorporating the unlabeled data.
Our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods.
- Score: 18.18484640332254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based semi-supervised learning (SSL) algorithms have led to
promising results in medical images segmentation and can alleviate doctors'
expensive annotations by leveraging unlabeled data. However, most of the
existing SSL algorithms in literature tend to regularize the model training by
perturbing networks and/or data. Observing that multi/dual-task learning
attends to various levels of information which have inherent prediction
perturbation, we ask the question in this work: can we explicitly build
task-level regularization rather than implicitly constructing networks- and/or
data-level perturbation-and-transformation for SSL? To answer this question, we
propose a novel dual-task-consistency semi-supervised framework for the first
time. Concretely, we use a dual-task deep network that jointly predicts a
pixel-wise segmentation map and a geometry-aware level set representation of
the target. The level set representation is converted to an approximated
segmentation map through a differentiable task transform layer. Simultaneously,
we introduce a dual-task consistency regularization between the level
set-derived segmentation maps and directly predicted segmentation maps for both
labeled and unlabeled data. Extensive experiments on two public datasets show
that our method can largely improve the performance by incorporating the
unlabeled data. Meanwhile, our framework outperforms the state-of-the-art
semi-supervised medical image segmentation methods. Code is available at:
https://github.com/Luoxd1996/DTC
Related papers
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - A Semi-Paired Approach For Label-to-Image Translation [6.888253564585197]
We introduce the first semi-supervised (semi-paired) framework for label-to-image translation.
In the semi-paired setting, the model has access to a small set of paired data and a larger set of unpaired images and labels.
We propose a training algorithm for this shared network, and we present a rare classes sampling algorithm to focus on under-represented classes.
arXiv Detail & Related papers (2023-06-23T16:13:43Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Histogram of Oriented Gradients Meet Deep Learning: A Novel Multi-task
Deep Network for Medical Image Semantic Segmentation [18.066680957993494]
We present our novel deep multi-task learning method for medical image segmentation.
We generate the pseudo-labels of an auxiliary task in an unsupervised manner.
Our method consistently improves the performance compared to the counter-part method.
arXiv Detail & Related papers (2022-04-02T23:50:29Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Boosting Semi-supervised Image Segmentation with Global and Local Mutual
Information Regularization [9.994508738317585]
We present a novel semi-supervised segmentation method that leverages mutual information (MI) on categorical distributions.
We evaluate the method on three challenging publicly-available datasets for medical image segmentation.
arXiv Detail & Related papers (2021-03-08T15:13:25Z) - Dual-Task Mutual Learning for Semi-Supervised Medical Image Segmentation [12.940103904327655]
We propose a novel dual-task mutual learning framework for semi-supervised medical image segmentation.
Our framework can be formulated as an integration of two individual segmentation networks based on two tasks.
By jointly learning the segmentation probability maps and signed distance maps of targets, our framework can enforce the geometric shape constraint and learn more reliable information.
arXiv Detail & Related papers (2021-03-08T12:38:23Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.