Domain and Task-Focused Example Selection for Data-Efficient Contrastive Medical Image Segmentation
- URL: http://arxiv.org/abs/2505.19208v1
- Date: Sun, 25 May 2025 16:11:48 GMT
- Title: Domain and Task-Focused Example Selection for Data-Efficient Contrastive Medical Image Segmentation
- Authors: Tyler Ward, Aaron Moseley, Abdullah-Al-Zubaer Imran,
- Abstract summary: We propose a novel self-supervised contrastive learning framework for medical image segmentation, dubbed PolyCL.<n>PolyCL learns and transfers context-aware discriminant features useful for segmentation from an innovative surrogate.<n>We show that PolyCL outperforms fully-supervised and self-supervised baselines in both low-data and cross-domain scenarios.
- Score: 0.2765106384328772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation is one of the most important tasks in the medical imaging pipeline as it influences a number of image-based decisions. To be effective, fully supervised segmentation approaches require large amounts of manually annotated training data. However, the pixel-level annotation process is expensive, time-consuming, and error-prone, hindering progress and making it challenging to perform effective segmentations. Therefore, models must learn efficiently from limited labeled data. Self-supervised learning (SSL), particularly contrastive learning via pre-training on unlabeled data and fine-tuning on limited annotations, can facilitate such limited labeled image segmentation. To this end, we propose a novel self-supervised contrastive learning framework for medical image segmentation, leveraging inherent relationships of different images, dubbed PolyCL. Without requiring any pixel-level annotations or unreasonable data augmentations, our PolyCL learns and transfers context-aware discriminant features useful for segmentation from an innovative surrogate, in a task-related manner. Additionally, we integrate the Segment Anything Model (SAM) into our framework in two novel ways: as a post-processing refinement module that improves the accuracy of predicted masks using bounding box prompts derived from coarse outputs, and as a propagation mechanism via SAM 2 that generates volumetric segmentations from a single annotated 2D slice. Experimental evaluations on three public computed tomography (CT) datasets demonstrate that PolyCL outperforms fully-supervised and self-supervised baselines in both low-data and cross-domain scenarios. Our code is available at https://github.com/tbwa233/PolyCL.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Consistency Regularisation in Varying Contexts and Feature Perturbations
for Semi-Supervised Semantic Segmentation of Histology Images [14.005379068469361]
We present a consistency based semi-supervised learning (SSL) approach that can help mitigate this challenge.
SSL models might also be susceptible to changing context and features perturbations exhibiting poor generalisation due to the limited training data.
We show that cross-consistency training makes the encoder features invariant to different perturbations and improves the prediction confidence.
arXiv Detail & Related papers (2023-01-30T18:21:57Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Towards Automated Polyp Segmentation Using Weakly- and Semi-Supervised
Learning and Deformable Transformers [8.01814397869811]
Polyp segmentation is a crucial step towards computer-aided diagnosis of colorectal cancer.
Most of the polyp segmentation methods require pixel-wise annotated datasets.
We propose a novel framework that can be trained using only weakly annotated images along with exploiting unlabeled images.
arXiv Detail & Related papers (2022-11-21T20:44:12Z) - Data-Limited Tissue Segmentation using Inpainting-Based Self-Supervised
Learning [3.7931881761831328]
Self-supervised learning (SSL) methods involving pretext tasks have shown promise in overcoming this requirement by first pretraining models using unlabeled data.
We evaluate the efficacy of two SSL methods (inpainting-based pretext tasks of context prediction and context restoration) for CT and MRI image segmentation in label-limited scenarios.
We demonstrate that optimally trained and easy-to-implement SSL segmentation models can outperform classically supervised methods for MRI and CT tissue segmentation in label-limited scenarios.
arXiv Detail & Related papers (2022-10-14T16:34:05Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
We propose a novel positional contrastive learning framework to generate contrastive data pairs.
The proposed PCL method can substantially improve the segmentation performance compared to existing methods in both semi-supervised setting and transfer learning setting.
arXiv Detail & Related papers (2021-06-16T22:15:28Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z) - Contrastive learning of global and local features for medical image
segmentation with limited annotations [10.238403787504756]
A key requirement for the success of supervised deep learning is a large labeled dataset.
We propose strategies for extending the contrastive learning framework for segmentation of medical images in the semi-supervised setting.
In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques.
arXiv Detail & Related papers (2020-06-18T13:31:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.