Attention based Writer Independent Handwriting Verification
- URL: http://arxiv.org/abs/2009.04532v3
- Date: Thu, 1 Oct 2020 00:59:36 GMT
- Title: Attention based Writer Independent Handwriting Verification
- Authors: Mohammad Abuzar Shaikh, Tiehang Duan, Mihir Chauhan, Sargur Srihari
- Abstract summary: We implement and integrate cross-attention and soft-attention mechanisms to capture salient points in feature space of 2D inputs.
We generate meaningful explanations for the provided decision by extracting attention maps from multiple levels of the network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of writer verification is to provide a likelihood score for whether
the queried and known handwritten image samples belong to the same writer or
not. Such a task calls for the neural network to make it's outcome
interpretable, i.e. provide a view into the network's decision making process.
We implement and integrate cross-attention and soft-attention mechanisms to
capture the highly correlated and salient points in feature space of 2D inputs.
The attention maps serve as an explanation premise for the network's output
likelihood score. The attention mechanism also allows the network to focus more
on relevant areas of the input, thus improving the classification performance.
Our proposed approach achieves a precision of 86\% for detecting intra-writer
cases in CEDAR cursive "AND" dataset. Furthermore, we generate meaningful
explanations for the provided decision by extracting attention maps from
multiple levels of the network.
Related papers
- Attention based End to end network for Offline Writer Identification on Word level data [3.5829161769306244]
We propose a writer identification system based on an attention-driven Convolutional Neural Network (CNN)
The system is trained utilizing image segments, known as fragments, extracted from word images, employing a pyramid-based strategy.
The efficacy of the proposed algorithm is evaluated on three benchmark databases.
arXiv Detail & Related papers (2024-04-11T09:41:14Z) - Semantics Meets Temporal Correspondence: Self-supervised Object-centric Learning in Videos [63.94040814459116]
Self-supervised methods have shown remarkable progress in learning high-level semantics and low-level temporal correspondence.
We propose a novel semantic-aware masked slot attention on top of the fused semantic features and correspondence maps.
We adopt semantic- and instance-level temporal consistency as self-supervision to encourage temporally coherent object-centric representations.
arXiv Detail & Related papers (2023-08-19T09:12:13Z) - Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural
Network [52.29330138835208]
Accurately matching local features between a pair of images is a challenging computer vision task.
Previous studies typically use attention based graph neural networks (GNNs) with fully-connected graphs over keypoints within/across images.
We propose MaKeGNN, a sparse attention-based GNN architecture which bypasses non-repeatable keypoints and leverages matchable ones to guide message passing.
arXiv Detail & Related papers (2023-07-04T02:50:44Z) - Improving Fine-Grained Visual Recognition in Low Data Regimes via
Self-Boosting Attention Mechanism [27.628260249895973]
Self-boosting attention mechanism (SAM) is a novel method for regularizing the network to focus on the key regions shared across samples and classes.
We develop a variant by using SAM to create multiple attention maps to pool convolutional maps in a style of bilinear pooling.
arXiv Detail & Related papers (2022-08-01T05:36:27Z) - Semantic Reinforced Attention Learning for Visual Place Recognition [15.84086970453363]
Large-scale visual place recognition (VPR) is inherently challenging because not all visual cues in the image are beneficial to the task.
We propose a novel Semantic Reinforced Attention Learning Network (SRALNet), in which the inferred attention can benefit from both semantic priors and data-driven fine-tuning.
Experiments demonstrate that our method outperforms state-of-the-art techniques on city-scale VPR benchmark datasets.
arXiv Detail & Related papers (2021-08-19T02:14:36Z) - Object Detection Based Handwriting Localization [2.6641834518599308]
We present an object detection based approach to localize handwritten regions from documents.
The proposed approach is also expected to facilitate other tasks such as handwriting recognition and signature verification.
arXiv Detail & Related papers (2021-06-28T21:25:20Z) - Bayesian Attention Belief Networks [59.183311769616466]
Attention-based neural networks have achieved state-of-the-art results on a wide range of tasks.
This paper introduces Bayesian attention belief networks, which construct a decoder network by modeling unnormalized attention weights.
We show that our method outperforms deterministic attention and state-of-the-art attention in accuracy, uncertainty estimation, generalization across domains, and adversarial attacks.
arXiv Detail & Related papers (2021-06-09T17:46:22Z) - Attentional Graph Neural Network for Parking-slot Detection [10.095984750382478]
We propose an attentional graph neural network based parking-slot detection method, which refers the marking-points in an around-view image as graph-structured data.
Without any manually designed post-processing, the proposed method is end-to-end trainable.
Experiments have been conducted on public benchmark dataset, where the proposed method achieves state-of-the-art accuracy.
arXiv Detail & Related papers (2021-04-06T15:14:39Z) - Coordinate Attention for Efficient Mobile Network Design [96.40415345942186]
We propose a novel attention mechanism for mobile networks by embedding positional information into channel attention.
Unlike channel attention that transforms a feature tensor to a single feature vector via 2D global pooling, the coordinate attention factorizes channel attention into two 1D feature encoding processes.
Our coordinate attention is beneficial to ImageNet classification and behaves better in down-stream tasks, such as object detection and semantic segmentation.
arXiv Detail & Related papers (2021-03-04T09:18:02Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.