Object Detection Based Handwriting Localization
- URL: http://arxiv.org/abs/2106.14989v1
- Date: Mon, 28 Jun 2021 21:25:20 GMT
- Title: Object Detection Based Handwriting Localization
- Authors: Yuli Wu, Yucheng Hu, Suting Miao
- Abstract summary: We present an object detection based approach to localize handwritten regions from documents.
The proposed approach is also expected to facilitate other tasks such as handwriting recognition and signature verification.
- Score: 2.6641834518599308
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present an object detection based approach to localize handwritten regions
from documents, which initially aims to enhance the anonymization during the
data transmission. The concatenated fusion of original and preprocessed images
containing both printed texts and handwritten notes or signatures are fed into
the convolutional neural network, where the bounding boxes are learned to
detect the handwriting. Afterwards, the handwritten regions can be processed
(e.g. replaced with redacted signatures) to conceal the personally identifiable
information (PII). This processing pipeline based on the deep learning network
Cascade R-CNN works at 10 fps on a GPU during the inference, which ensures the
enhanced anonymization with minimal computational overheads. Furthermore, the
impressive generalizability has been empirically showcased: the trained model
based on the English-dominant dataset works well on the fictitious unseen
invoices, even in Chinese. The proposed approach is also expected to facilitate
other tasks such as handwriting recognition and signature verification.
Related papers
- Contextual Document Embeddings [77.22328616983417]
We propose two complementary methods for contextualized document embeddings.
First, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss.
Second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation.
arXiv Detail & Related papers (2024-10-03T14:33:34Z) - Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time.
Our results on FUNSD, CORD, XFUNDIE show that our method can effectively improve the performance of semantic entity recognition tasks.
arXiv Detail & Related papers (2024-07-09T14:35:49Z) - Attention based End to end network for Offline Writer Identification on Word level data [3.5829161769306244]
We propose a writer identification system based on an attention-driven Convolutional Neural Network (CNN)
The system is trained utilizing image segments, known as fragments, extracted from word images, employing a pyramid-based strategy.
The efficacy of the proposed algorithm is evaluated on three benchmark databases.
arXiv Detail & Related papers (2024-04-11T09:41:14Z) - Efficiently Leveraging Linguistic Priors for Scene Text Spotting [63.22351047545888]
This paper proposes a method that leverages linguistic knowledge from a large text corpus to replace the traditional one-hot encoding used in auto-regressive scene text spotting and recognition models.
We generate text distributions that align well with scene text datasets, removing the need for in-domain fine-tuning.
Experimental results show that our method not only improves recognition accuracy but also enables more accurate localization of words.
arXiv Detail & Related papers (2024-02-27T01:57:09Z) - Self-Supervised Representation Learning for Online Handwriting Text
Classification [0.8594140167290099]
We propose the novel Part of Stroke Masking (POSM) as a pretext task for pretraining models to extract informative representations from the online handwriting of individuals in English and Chinese languages.
To evaluate the quality of the extracted representations, we use both intrinsic and extrinsic evaluation methods.
The pretrained models are fine-tuned to achieve state-of-the-art results in tasks such as writer identification, gender classification, and handedness classification.
arXiv Detail & Related papers (2023-10-10T14:07:49Z) - Uncovering the Handwritten Text in the Margins: End-to-end Handwritten
Text Detection and Recognition [0.840835093659811]
This work presents an end-to-end framework for automatic detection and recognition of handwritten marginalia.
It uses data augmentation and transfer learning to overcome training data scarcity.
The effectiveness of the proposed framework has been empirically evaluated on the data from early book collections found in the Uppsala University Library in Sweden.
arXiv Detail & Related papers (2023-03-10T14:00:53Z) - Siamese based Neural Network for Offline Writer Identification on word
level data [7.747239584541488]
We propose a novel scheme to identify the author of a document based on the input word image.
Our method is text independent and does not impose any constraint on the size of the input image under examination.
arXiv Detail & Related papers (2022-11-17T10:01:46Z) - Boosting Modern and Historical Handwritten Text Recognition with
Deformable Convolutions [52.250269529057014]
Handwritten Text Recognition (HTR) in free-volution pages is a challenging image understanding task.
We propose to adopt deformable convolutions, which can deform depending on the input at hand and better adapt to the geometric variations of the text.
arXiv Detail & Related papers (2022-08-17T06:55:54Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
Much of the existing linguistic data in many languages of the world is locked away in non-digitized books and documents.
Previous work has demonstrated the utility of neural post-correction methods on recognition of less-well-resourced languages.
We present a semi-supervised learning method that makes it possible to utilize raw images to improve performance.
arXiv Detail & Related papers (2021-11-04T04:39:02Z) - SmartPatch: Improving Handwritten Word Imitation with Patch
Discriminators [67.54204685189255]
We propose SmartPatch, a new technique increasing the performance of current state-of-the-art methods.
We combine the well-known patch loss with information gathered from the parallel trained handwritten text recognition system.
This leads to a more enhanced local discriminator and results in more realistic and higher-quality generated handwritten words.
arXiv Detail & Related papers (2021-05-21T18:34:21Z) - Attention based Writer Independent Handwriting Verification [0.0]
We implement and integrate cross-attention and soft-attention mechanisms to capture salient points in feature space of 2D inputs.
We generate meaningful explanations for the provided decision by extracting attention maps from multiple levels of the network.
arXiv Detail & Related papers (2020-09-07T16:28:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.