RoIFusion: 3D Object Detection from LiDAR and Vision
- URL: http://arxiv.org/abs/2009.04554v1
- Date: Wed, 9 Sep 2020 20:23:27 GMT
- Title: RoIFusion: 3D Object Detection from LiDAR and Vision
- Authors: Can Chen, Luca Zanotti Fragonara, and Antonios Tsourdos
- Abstract summary: We propose a novel fusion algorithm by projecting a set of 3D Region of Interests (RoIs) from the point clouds to the 2D RoIs of the corresponding the images.
Our approach achieves state-of-the-art performance on the KITTI 3D object detection challenging benchmark.
- Score: 7.878027048763662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When localizing and detecting 3D objects for autonomous driving scenes,
obtaining information from multiple sensor (e.g. camera, LIDAR) typically
increases the robustness of 3D detectors. However, the efficient and effective
fusion of different features captured from LIDAR and camera is still
challenging, especially due to the sparsity and irregularity of point cloud
distributions. This notwithstanding, point clouds offer useful complementary
information. In this paper, we would like to leverage the advantages of LIDAR
and camera sensors by proposing a deep neural network architecture for the
fusion and the efficient detection of 3D objects by identifying their
corresponding 3D bounding boxes with orientation. In order to achieve this
task, instead of densely combining the point-wise feature of the point cloud
and the related pixel features, we propose a novel fusion algorithm by
projecting a set of 3D Region of Interests (RoIs) from the point clouds to the
2D RoIs of the corresponding the images. Finally, we demonstrate that our deep
fusion approach achieves state-of-the-art performance on the KITTI 3D object
detection challenging benchmark.
Related papers
- Sparse-to-Dense LiDAR Point Generation by LiDAR-Camera Fusion for 3D Object Detection [9.076003184833557]
We propose the LiDAR-Camera Augmentation Network (LCANet), a novel framework that reconstructs LiDAR point cloud data by fusing 2D image features.
LCANet fuses data from LiDAR sensors by projecting image features into the 3D space, integrating semantic information into the point cloud data.
This fusion effectively compensates for LiDAR's weakness in detecting objects at long distances, which are often represented by sparse points.
arXiv Detail & Related papers (2024-09-23T13:03:31Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - SemanticBEVFusion: Rethink LiDAR-Camera Fusion in Unified Bird's-Eye
View Representation for 3D Object Detection [14.706717531900708]
LiDAR and camera are two essential sensors for 3D object detection in autonomous driving.
Recent methods focus on point-level fusion which paints the LiDAR point cloud with camera features in the perspective view.
We present SemanticBEVFusion to deeply fuse camera features with LiDAR features in a unified BEV representation.
arXiv Detail & Related papers (2022-12-09T05:48:58Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data [80.14669385741202]
We propose a self-supervised pre-training method for 3D perception models tailored to autonomous driving data.
We leverage the availability of synchronized and calibrated image and Lidar sensors in autonomous driving setups.
Our method does not require any point cloud nor image annotations.
arXiv Detail & Related papers (2022-03-30T12:40:30Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
We develop a novel single-stage 3D detector for point clouds in an anchor-free manner.
We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps.
We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression.
arXiv Detail & Related papers (2021-08-08T13:42:13Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
We propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization.
We design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution.
arXiv Detail & Related papers (2020-12-20T18:43:41Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z) - 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View
Spatial Feature Fusion for 3D Object Detection [10.507404260449333]
We propose a new architecture for fusing camera and LiDAR sensors for 3D object detection.
The proposed 3D-CVF achieves state-of-the-art performance in the KITTI benchmark.
arXiv Detail & Related papers (2020-04-27T08:34:46Z) - 3D Object Detection Method Based on YOLO and K-Means for Image and Point
Clouds [1.9458156037869139]
Lidar based 3D object detection and classification tasks are essential for autonomous driving.
This paper proposes a 3D object detection method based on point cloud and image.
arXiv Detail & Related papers (2020-04-21T04:32:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.