Cross-Modality 3D Object Detection
- URL: http://arxiv.org/abs/2008.10436v1
- Date: Sun, 16 Aug 2020 11:01:20 GMT
- Title: Cross-Modality 3D Object Detection
- Authors: Ming Zhu, Chao Ma, Pan Ji, Xiaokang Yang
- Abstract summary: We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
- Score: 63.29935886648709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we focus on exploring the fusion of images and point clouds
for 3D object detection in view of the complementary nature of the two
modalities, i.e., images possess more semantic information while point clouds
specialize in distance sensing. To this end, we present a novel two-stage
multi-modal fusion network for 3D object detection, taking both binocular
images and raw point clouds as input. The whole architecture facilitates
two-stage fusion. The first stage aims at producing 3D proposals through sparse
point-wise feature fusion. Within the first stage, we further exploit a joint
anchor mechanism that enables the network to utilize 2D-3D classification and
regression simultaneously for better proposal generation.
The second stage works on the 2D and 3D proposal regions and fuses their
dense features. In addition, we propose to use pseudo LiDAR points from stereo
matching as a data augmentation method to densify the LiDAR points, as we
observe that objects missed by the detection network mostly have too few points
especially for far-away objects. Our experiments on the KITTI dataset show that
the proposed multi-stage fusion helps the network to learn better
representations.
Related papers
- Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
We present a new cross-modal 3D object detector, namely UPIDet, which aims to unleash the potential of the image branch from two aspects.
First, UPIDet introduces a new 2D auxiliary task called normalized local coordinate map estimation.
Second, we discover that the representational capability of the point cloud backbone can be enhanced through the gradients backpropagated from the training objectives of the image branch.
arXiv Detail & Related papers (2023-01-22T08:26:58Z) - Multi-Sem Fusion: Multimodal Semantic Fusion for 3D Object Detection [11.575945934519442]
LiDAR and camera fusion techniques are promising for achieving 3D object detection in autonomous driving.
Most multi-modal 3D object detection frameworks integrate semantic knowledge from 2D images into 3D LiDAR point clouds.
We propose a general multi-modal fusion framework Multi-Sem Fusion (MSF) to fuse the semantic information from both the 2D image and 3D points scene parsing results.
arXiv Detail & Related papers (2022-12-10T10:54:41Z) - Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object
Detection [16.198358858773258]
Multi-modal 3D object detection has been an active research topic in autonomous driving.
It is non-trivial to explore the cross-modal feature fusion between sparse 3D points and dense 2D pixels.
Recent approaches either fuse the image features with the point cloud features that are projected onto the 2D image plane or combine the sparse point cloud with dense image pixels.
arXiv Detail & Related papers (2022-10-18T06:15:56Z) - Bridged Transformer for Vision and Point Cloud 3D Object Detection [92.86856146086316]
Bridged Transformer (BrT) is an end-to-end architecture for 3D object detection.
BrT learns to identify 3D and 2D object bounding boxes from both points and image patches.
We experimentally show that BrT surpasses state-of-the-art methods on SUN RGB-D and ScanNetV2 datasets.
arXiv Detail & Related papers (2022-10-04T05:44:22Z) - FFPA-Net: Efficient Feature Fusion with Projection Awareness for 3D
Object Detection [19.419030878019974]
unstructured 3D point clouds are filled in the 2D plane and 3D point cloud features are extracted faster using projection-aware convolution layers.
The corresponding indexes between different sensor signals are established in advance in the data preprocessing.
Two new plug-and-play fusion modules, LiCamFuse and BiLiCamFuse, are proposed.
arXiv Detail & Related papers (2022-09-15T16:13:19Z) - MBDF-Net: Multi-Branch Deep Fusion Network for 3D Object Detection [17.295359521427073]
We propose a Multi-Branch Deep Fusion Network (MBDF-Net) for 3D object detection.
In the first stage, our multi-branch feature extraction network utilizes Adaptive Attention Fusion modules to produce cross-modal fusion features from single-modal semantic features.
In the second stage, we use a region of interest (RoI) -pooled fusion module to generate enhanced local features for refinement.
arXiv Detail & Related papers (2021-08-29T15:40:15Z) - Similarity-Aware Fusion Network for 3D Semantic Segmentation [87.51314162700315]
We propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation.
We employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds.
We show that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
arXiv Detail & Related papers (2021-07-04T09:28:18Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Volumetric Propagation Network: Stereo-LiDAR Fusion for Long-Range Depth
Estimation [81.08111209632501]
We propose a geometry-aware stereo-LiDAR fusion network for long-range depth estimation.
We exploit sparse and accurate point clouds as a cue for guiding correspondences of stereo images in a unified 3D volume space.
Our network achieves state-of-the-art performance on the KITTI and the Virtual- KITTI datasets.
arXiv Detail & Related papers (2021-03-24T03:24:46Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
We propose a novel fusion algorithm by projecting a set of 3D Region of Interests (RoIs) from the point clouds to the 2D RoIs of the corresponding the images.
Our approach achieves state-of-the-art performance on the KITTI 3D object detection challenging benchmark.
arXiv Detail & Related papers (2020-09-09T20:23:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.