Understanding Coarsening for Embedding Large-Scale Graphs
- URL: http://arxiv.org/abs/2009.04925v1
- Date: Thu, 10 Sep 2020 15:06:33 GMT
- Title: Understanding Coarsening for Embedding Large-Scale Graphs
- Authors: Taha Atahan Akyildiz, Amro Alabsi Aljundi, Kamer Kaya
- Abstract summary: Proper analysis of graphs with Machine Learning (ML) algorithms has the potential to yield far-reaching insights into many areas of research and industry.
The irregular structure of graph data constitutes an obstacle for running ML tasks on graphs.
We analyze the impact of the coarsening quality on the embedding performance both in terms of speed and accuracy.
- Score: 3.6739949215165164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant portion of the data today, e.g, social networks, web
connections, etc., can be modeled by graphs. A proper analysis of graphs with
Machine Learning (ML) algorithms has the potential to yield far-reaching
insights into many areas of research and industry. However, the irregular
structure of graph data constitutes an obstacle for running ML tasks on graphs
such as link prediction, node classification, and anomaly detection. Graph
embedding is a compute-intensive process of representing graphs as a set of
vectors in a d-dimensional space, which in turn makes it amenable to ML tasks.
Many approaches have been proposed in the literature to improve the performance
of graph embedding, e.g., using distributed algorithms, accelerators, and
pre-processing techniques. Graph coarsening, which can be considered a
pre-processing step, is a structural approximation of a given, large graph with
a smaller one. As the literature suggests, the cost of embedding significantly
decreases when coarsening is employed. In this work, we thoroughly analyze the
impact of the coarsening quality on the embedding performance both in terms of
speed and accuracy. Our experiments with a state-of-the-art, fast graph
embedding tool show that there is an interplay between the coarsening decisions
taken and the embedding quality.
Related papers
- Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Synthetic Graph Generation to Benchmark Graph Learning [7.914804101579097]
Graph learning algorithms have attained state-of-the-art performance on many graph analysis tasks.
One reason is due to the very small number of datasets used in practice to benchmark the performance of graph learning algorithms.
We propose to generate synthetic graphs, and study the behaviour of graph learning algorithms in a controlled scenario.
arXiv Detail & Related papers (2022-04-04T10:48:32Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
Training of Relation Graph Convolutional Networks (R-GCN) does not scale well with the size of the graph.
In this work, we experiment with the use of graph summarization techniques to compress the graph.
We obtain reasonable results on the AIFB, MUTAG and AM datasets.
arXiv Detail & Related papers (2022-03-05T00:28:43Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Graph Coarsening with Neural Networks [8.407217618651536]
We propose a framework for measuring the quality of coarsening algorithm and show that depending on the goal, we need to carefully choose the Laplace operator on the coarse graph.
Motivated by the observation that the current choice of edge weight for the coarse graph may be sub-optimal, we parametrize the weight assignment map with graph neural networks and train it to improve the coarsening quality in an unsupervised way.
arXiv Detail & Related papers (2021-02-02T06:50:07Z) - Understanding graph embedding methods and their applications [1.14219428942199]
Graph embedding techniques can be effective in converting high-dimensional sparse graphs into low-dimensional, dense and continuous vector spaces.
The generated nonlinear and highly informative graph embeddings in the latent space can be conveniently used to address different downstream graph analytics tasks.
arXiv Detail & Related papers (2020-12-15T00:30:22Z) - Graph topology inference benchmarks for machine learning [16.857405938139525]
We introduce several benchmarks specifically designed to reveal the relative merits and limitations of graph inference methods.
We also contrast some of the most prominent techniques in the literature.
arXiv Detail & Related papers (2020-07-16T09:40:32Z) - Just SLaQ When You Approximate: Accurate Spectral Distances for
Web-Scale Graphs [6.72542623686684]
We propose SLaQ, an efficient and effective approximation technique for computing spectral distances between graphs with billions of nodes and edges.
We show that SLaQ outperforms existing methods, oftentimes by several orders of magnitude in approximation accuracy.
arXiv Detail & Related papers (2020-03-03T01:25:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.