Understanding graph embedding methods and their applications
- URL: http://arxiv.org/abs/2012.08019v1
- Date: Tue, 15 Dec 2020 00:30:22 GMT
- Title: Understanding graph embedding methods and their applications
- Authors: Mengjia Xu
- Abstract summary: Graph embedding techniques can be effective in converting high-dimensional sparse graphs into low-dimensional, dense and continuous vector spaces.
The generated nonlinear and highly informative graph embeddings in the latent space can be conveniently used to address different downstream graph analytics tasks.
- Score: 1.14219428942199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph analytics can lead to better quantitative understanding and control of
complex networks, but traditional methods suffer from high computational cost
and excessive memory requirements associated with the high-dimensionality and
heterogeneous characteristics of industrial size networks. Graph embedding
techniques can be effective in converting high-dimensional sparse graphs into
low-dimensional, dense and continuous vector spaces, preserving maximally the
graph structure properties. Another type of emerging graph embedding employs
Gaussian distribution-based graph embedding with important uncertainty
estimation. The main goal of graph embedding methods is to pack every node's
properties into a vector with a smaller dimension, hence, node similarity in
the original complex irregular spaces can be easily quantified in the embedded
vector spaces using standard metrics. The generated nonlinear and highly
informative graph embeddings in the latent space can be conveniently used to
address different downstream graph analytics tasks (e.g., node classification,
link prediction, community detection, visualization, etc.). In this Review, we
present some fundamental concepts in graph analytics and graph embedding
methods, focusing in particular on random walk-based and neural network-based
methods. We also discuss the emerging deep learning-based dynamic graph
embedding methods. We highlight the distinct advantages of graph embedding
methods in four diverse applications, and present implementation details and
references to open-source software as well as available databases in the
Appendix for the interested readers to start their exploration into graph
analytics.
Related papers
- Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
We present a novel graph embedding approach based on the popularity-similarity and local attraction paradigms.
We show, using extensive experimental analysis, that the proposed method outperforms state-of-the-art graph embedding algorithms.
arXiv Detail & Related papers (2022-09-11T14:46:38Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
We quantify the information overlap between graph topology, node features, and labels.
We show that graph concatenation is a simple but more flexible alternative to graph convolution.
arXiv Detail & Related papers (2022-07-18T16:39:33Z) - Embedding Graphs on Grassmann Manifold [31.42901131602713]
This paper develops a new graph representation learning scheme, namely EGG, which embeds approximated second-order graph characteristics into a Grassmann manifold.
The effectiveness of EGG is demonstrated using both clustering and classification tasks at the node level and graph level.
arXiv Detail & Related papers (2022-05-30T12:56:24Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Understanding Coarsening for Embedding Large-Scale Graphs [3.6739949215165164]
Proper analysis of graphs with Machine Learning (ML) algorithms has the potential to yield far-reaching insights into many areas of research and industry.
The irregular structure of graph data constitutes an obstacle for running ML tasks on graphs.
We analyze the impact of the coarsening quality on the embedding performance both in terms of speed and accuracy.
arXiv Detail & Related papers (2020-09-10T15:06:33Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.