論文の概要: Task-specific Objectives of Pre-trained Language Models for Dialogue
Adaptation
- arxiv url: http://arxiv.org/abs/2009.04984v1
- Date: Thu, 10 Sep 2020 16:46:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 02:42:58.781153
- Title: Task-specific Objectives of Pre-trained Language Models for Dialogue
Adaptation
- Title(参考訳): 対話適応のための事前学習言語モデルのタスク特化目的
- Authors: Junlong Li, Zhuosheng Zhang, Hai Zhao, Xi Zhou, Xiang Zhou
- Abstract要約: PrLMを利用する一般的なプロセスは、まずタスク非依存のLMトレーニング目標を持つ大規模汎用コーパス上で事前トレーニングを行い、タスク固有のトレーニング目標を持つタスクデータセットを微調整する。
タスク固有の目的を持つドメイン内タスク関連コーパスにタスク固有の事前学習を導入する。
この手順は、特定のタスクのモデル理解能力を高めるために、元の2つのステージの間に置かれる。
- 参考スコア(独自算出の注目度): 79.0866650271659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained Language Models (PrLMs) have been widely used as backbones in
lots of Natural Language Processing (NLP) tasks. The common process of
utilizing PrLMs is first pre-training on large-scale general corpora with
task-independent LM training objectives, then fine-tuning on task datasets with
task-specific training objectives. Pre-training in a task-independent way
enables the models to learn language representations, which is universal to
some extent, but fails to capture crucial task-specific features in the
meantime. This will lead to an incompatibility between pre-training and
fine-tuning. To address this issue, we introduce task-specific pre-training on
in-domain task-related corpora with task-specific objectives. This procedure is
placed between the original two stages to enhance the model understanding
capacity of specific tasks. In this work, we focus on Dialogue-related Natural
Language Processing (DrNLP) tasks and design a Dialogue-Adaptive Pre-training
Objective (DAPO) based on some important qualities for assessing dialogues
which are usually ignored by general LM pre-training objectives. PrLMs with
DAPO on a large in-domain dialogue corpus are then fine-tuned for downstream
DrNLP tasks. Experimental results show that models with DAPO surpass those with
general LM pre-training objectives and other strong baselines on downstream
DrNLP tasks.
- Abstract(参考訳): 事前訓練された言語モデル(PrLM)は、多くの自然言語処理(NLP)タスクのバックボーンとして広く使われている。
PrLMを利用する一般的なプロセスは、まずタスク非依存のLMトレーニング目標を持つ大規模汎用コーパス上で事前トレーニングを行い、タスク固有のトレーニング目標を持つタスクデータセットを微調整する。
タスクに依存しない方法で事前トレーニングを行うことで、ある程度普遍的な言語表現を学ぶことができるが、一方で重要なタスク固有の特徴を捉えることができない。
これにより、事前トレーニングと微調整の互換性がなくなる。
そこで本研究では,タスク固有の目的を持つドメイン内タスク関連コーパス上で,タスク固有の事前学習を導入する。
この手順は、特定のタスクのモデル理解能力を高めるために、元の2段階の間に置かれる。
本研究では,ダイアログ関連自然言語処理(DrNLP)タスクに着目し,一般のLM事前学習目標によって無視される対話を評価する上で重要な品質に基づいて,対話適応型事前学習対象(DAPO)を設計する。
DAPOを大きなドメイン内対話コーパスに配置したPrLMは、下流のDrNLPタスクのために微調整される。
実験結果から, DAPO を用いたモデルは, 一般的な LM 事前学習目標および下流DrNLP タスクの強いベースラインを超えることがわかった。
関連論文リスト
- TapWeight: Reweighting Pretraining Objectives for Task-Adaptive Pretraining [34.93043212352875]
TapWeightはタスク適応型事前学習フレームワークで、各事前学習対象の最適な重要性を自動的に決定する。
我々はTapWeightを分子特性予測と自然言語理解タスクの両方に適用し,ベースライン法をはるかに上回った。
論文 参考訳(メタデータ) (2024-10-13T20:56:13Z) - Forging Multiple Training Objectives for Pre-trained Language Models via
Meta-Learning [97.28779163988833]
複数の事前学習目標が単一目的言語モデリングの理解能力の欠如を埋める。
メタラーニングに基づく新しい適応型サンプリングシステムであるtextitMOMETAS を提案し,任意の事前学習対象に対して潜時サンプリングパターンを学習する。
論文 参考訳(メタデータ) (2022-10-19T04:38:26Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
PLMの継続事前学習のための外部データを適応的に検索するAdaPromptを提案する。
5つのNLPベンチマークの実験結果から、AdaPromptは数ショット設定で標準PLMよりも改善可能であることが示された。
ゼロショット設定では、標準のプロンプトベースの手法を26.35%の相対誤差削減で上回ります。
論文 参考訳(メタデータ) (2022-02-10T04:04:57Z) - Domain-Adaptive Pretraining Methods for Dialogue Understanding [42.83187765297047]
オープンドメインデータで事前訓練されたBERTやSpanBERTのような言語モデルは、様々なNLPタスクにおいて顕著な利益を得ている。
本稿では,下流タスクにおけるドメイン適応型事前学習の効果について検討する。
論文 参考訳(メタデータ) (2021-05-28T08:25:27Z) - Structural Pre-training for Dialogue Comprehension [51.215629336320305]
本稿では,SPIDER, Structure Pre-trained DialoguE Readerについて述べる。
対話のような特徴をシミュレートするために,元のLM目的に加えて,2つの訓練目標を提案する。
広く使われている対話ベンチマークの実験結果から,新たに導入した自己教師型タスクの有効性が検証された。
論文 参考訳(メタデータ) (2021-05-23T15:16:54Z) - Self-Supervised Meta-Learning for Few-Shot Natural Language
Classification Tasks [40.97125791174191]
ラベルのないテキストから大規模でリッチなメタ学習タスク分布を生成するための自己教師型手法を提案する。
このメタトレーニングは、言語モデル事前学習の後に微調整を行うよりも、数ショットの一般化に繋がることを示す。
論文 参考訳(メタデータ) (2020-09-17T17:53:59Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。