Spectral Analysis Network for Deep Representation Learning and Image
Clustering
- URL: http://arxiv.org/abs/2009.05235v1
- Date: Fri, 11 Sep 2020 05:07:15 GMT
- Title: Spectral Analysis Network for Deep Representation Learning and Image
Clustering
- Authors: Jinghua Wang, Adrian Hilton and Jianmin Jiang
- Abstract summary: This paper proposes a new network structure for unsupervised deep representation learning based on spectral analysis.
It can identify the local similarities among images in patch level and thus more robust against occlusion.
It can learn more clustering-friendly representations and is capable to reveal the deep correlations among data samples.
- Score: 53.415803942270685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep representation learning is a crucial procedure in multimedia analysis
and attracts increasing attention. Most of the popular techniques rely on
convolutional neural network and require a large amount of labeled data in the
training procedure. However, it is time consuming or even impossible to obtain
the label information in some tasks due to cost limitation. Thus, it is
necessary to develop unsupervised deep representation learning techniques. This
paper proposes a new network structure for unsupervised deep representation
learning based on spectral analysis, which is a popular technique with solid
theory foundations. Compared with the existing spectral analysis methods, the
proposed network structure has at least three advantages. Firstly, it can
identify the local similarities among images in patch level and thus more
robust against occlusion. Secondly, through multiple consecutive spectral
analysis procedures, the proposed network can learn more clustering-friendly
representations and is capable to reveal the deep correlations among data
samples. Thirdly, it can elegantly integrate different spectral analysis
procedures, so that each spectral analysis procedure can have their individual
strengths in dealing with different data sample distributions. Extensive
experimental results show the effectiveness of the proposed methods on various
image clustering tasks.
Related papers
- Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
This paper proposes a novel unsupervised deep learning strategy tailored to ultrasound to obtain easily interpretable tissue separations.
We integrate key concepts from unsupervised deep spectral methods, which combine spectral graph theory with deep learning methods.
We utilize self-supervised transformer features for spectral clustering to generate meaningful segments based on ultrasound-specific metrics and shape and positional priors, ensuring semantic consistency across the dataset.
arXiv Detail & Related papers (2024-08-04T14:30:14Z) - Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
Convolutional neural networks (CNNs) have achieved remarkable performance in hyperspectral image (HSI) classification.
We propose a spectral graph reasoning network (SGR) learning framework comprising two crucial modules.
Experiments on two HSI datasets demonstrate that the proposed architecture can significantly improve the classification accuracy.
arXiv Detail & Related papers (2024-07-02T20:29:23Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions.
In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution.
We present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples.
arXiv Detail & Related papers (2021-08-31T02:13:00Z) - SA-Net: A deep spectral analysis network for image clustering [31.334196673143257]
We propose a deep spectral analysis network for unsupervised representation learning and image clustering.
The SA-Net has the capability to learn deep representations and reveal deep correlations among data samples.
Our proposed SA-Net outperforms 11 benchmarks across a number of image clustering applications.
arXiv Detail & Related papers (2020-09-11T05:27:23Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.