DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2312.12441v1
- Date: Sun, 29 Oct 2023 15:26:37 GMT
- Title: DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification
- Authors: Neetu Sigger, Tuan Thanh Nguyen, Gianluca Tozzi, Quoc-Tuan Vien, Sinh
Van Nguyen
- Abstract summary: We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
- Score: 6.521187080027966
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hyperspectral images (HSI) have become popular for analysing remotely sensed
images in multiple domain like agriculture, medical. However, existing models
struggle with complex relationships and characteristics of spectral-spatial
data due to the multi-band nature and data redundancy of hyperspectral data. To
address this limitation, we propose a new network called DiffSpectralNet, which
combines diffusion and transformer techniques. Our approach involves a two-step
process. First, we use an unsupervised learning framework based on the
diffusion model to extract both high-level and low-level spectral-spatial
features. The diffusion method is capable of extracting diverse and meaningful
spectral-spatial features, leading to improvement in HSI classification. Then,
we employ a pretrained denoising U-Net to extract intermediate hierarchical
features for classification. Finally, we use a supervised transformer-based
classifier to perform the HSI classification. Through comprehensive experiments
on HSI datasets, we evaluate the classification performance of DiffSpectralNet.
The results demonstrate that our framework significantly outperforms existing
approaches, achieving state-of-the-art performance.
Related papers
- Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
Convolutional neural networks (CNNs) have achieved remarkable performance in hyperspectral image (HSI) classification.
We propose a spectral graph reasoning network (SGR) learning framework comprising two crucial modules.
Experiments on two HSI datasets demonstrate that the proposed architecture can significantly improve the classification accuracy.
arXiv Detail & Related papers (2024-07-02T20:29:23Z) - CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification [3.821081081400729]
Current convolutional neural networks (CNNs) focus on local features in hyperspectral data.
Transformer framework excels at extracting global features from hyperspectral imagery.
This research introduces the Convolutional Meet Transformer Network (CMTNet)
arXiv Detail & Related papers (2024-06-20T07:56:51Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - SpectralDiff: A Generative Framework for Hyperspectral Image
Classification with Diffusion Models [18.391049303136715]
We propose a generative framework for HSI classification with diffusion models (SpectralDiff)
SpectralDiff effectively mines the distribution information of high-dimensional and highly redundant data.
Experiments on three public HSI datasets demonstrate that the proposed method can achieve better performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-04-12T16:32:34Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
One important task of hyperspectral image (HSI) processing is the extraction of spectral-spatial features.
We propose several approaches to HSI segmentation based on M-GSP feature extraction.
Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral-spatial information extraction.
arXiv Detail & Related papers (2021-11-29T23:28:18Z) - SpectralFormer: Rethinking Hyperspectral Image Classification with
Transformers [91.09957836250209]
Hyperspectral (HS) images are characterized by approximately contiguous spectral information.
CNNs have been proven to be a powerful feature extractor in HS image classification.
We propose a novel backbone network called ulSpectralFormer for HS image classification.
arXiv Detail & Related papers (2021-07-07T02:59:21Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
This paper proposes a new network structure for unsupervised deep representation learning based on spectral analysis.
It can identify the local similarities among images in patch level and thus more robust against occlusion.
It can learn more clustering-friendly representations and is capable to reveal the deep correlations among data samples.
arXiv Detail & Related papers (2020-09-11T05:07:15Z) - Improving Deep Hyperspectral Image Classification Performance with
Spectral Unmixing [3.84448093764973]
We propose an abundance-based multi-HSI classification method.
We convert every HSI from the spectral domain to the abundance domain by a dataset-specific autoencoder.
Secondly, the abundance representations from multiple HSIs are collected to form an enlarged dataset.
arXiv Detail & Related papers (2020-04-01T17:14:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.