Object Recognition for Economic Development from Daytime Satellite
Imagery
- URL: http://arxiv.org/abs/2009.05455v1
- Date: Fri, 11 Sep 2020 14:07:12 GMT
- Title: Object Recognition for Economic Development from Daytime Satellite
Imagery
- Authors: Klaus Ackermann, Alexey Chernikov, Nandini Anantharama, Miethy Zaman,
Paul A Raschky
- Abstract summary: This paper proposes a novel method to extract infrastructure features from high-resolution satellite images.
We collected high-resolution satellite images for 5 million 1km $times$ 1km grid cells covering 21 African countries.
- Score: 0.1779398251245519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable data about the stock of physical capital and infrastructure in
developing countries is typically very scarce. This is particular a problem for
data at the subnational level where existing data is often outdated, not
consistently measured or coverage is incomplete. Traditional data collection
methods are time and labor-intensive costly, which often prohibits developing
countries from collecting this type of data. This paper proposes a novel method
to extract infrastructure features from high-resolution satellite images. We
collected high-resolution satellite images for 5 million 1km $\times$ 1km grid
cells covering 21 African countries. We contribute to the growing body of
literature in this area by training our machine learning algorithm on
ground-truth data. We show that our approach strongly improves the predictive
accuracy. Our methodology can build the foundation to then predict subnational
indicators of economic development for areas where this data is either missing
or unreliable.
Related papers
- Automated National Urban Map Extraction [0.3495246564946556]
Developing countries usually lack the proper governance means to generate and regularly update a national rooftop map.
Using traditional photogrammetry and surveying methods, we can bridge this gap and propose an automated pipeline to fetch such national urban maps.
This paper aims to exploit the power of fully convolutional neural networks for multi-class buildings' instance segmentation to leverage high object-wise accuracy results.
We detail all engineering steps to replicate this work and ensure highly accurate results in dense and slum areas witnessed in regions that lack proper urban planning in the Global South.
arXiv Detail & Related papers (2024-04-09T10:47:43Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
There have been severe concerns over the trustworthiness of AI technologies.
Machine and deep learning algorithms depend heavily on the data used during their development.
We propose a framework to evaluate the datasets through a responsible rubric.
arXiv Detail & Related papers (2023-10-24T14:01:53Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
We propose a method for estimating building coverage using only publicly available low-resolution satellite imagery.
Our model achieves a coefficient of determination as high as 0.968 on predicting building coverage in regions of different levels of development around the world.
arXiv Detail & Related papers (2023-01-04T05:19:33Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Predicting Poverty Level from Satellite Imagery using Deep Neural
Networks [0.0]
I develop deep learning computer vision methods that can predict a region's poverty level from an overhead satellite image.
I explore the impact that data quantity and data augmentation have on the representational power and overall accuracy of the networks.
arXiv Detail & Related papers (2021-11-30T18:57:24Z) - SustainBench: Benchmarks for Monitoring the Sustainable Development
Goals with Machine Learning [63.192289553021816]
Progress toward the United Nations Sustainable Development Goals has been hindered by a lack of data on key environmental and socioeconomic indicators.
Recent advances in machine learning have made it possible to utilize abundant, frequently-updated, and globally available data, such as from satellites or social media.
In this paper, we introduce SustainBench, a collection of 15 benchmark tasks across 7 SDGs.
arXiv Detail & Related papers (2021-11-08T18:59:04Z) - The Multi-Temporal Urban Development SpaceNet Dataset [7.606927524074595]
We present the Multi-Temporal Urban Development SpaceNet (MUDS) dataset.
This open source dataset consists of medium resolution (4.0m) satellite imagery mosaics.
Each building is assigned a unique identifier (i.e. address), which permits tracking of individual objects over time.
We demonstrate methods to track building footprint construction (or demolition) over time, thereby directly assessing urbanization.
arXiv Detail & Related papers (2021-02-08T18:28:52Z) - Utilizing Satellite Imagery Datasets and Machine Learning Data Models to
Evaluate Infrastructure Change in Undeveloped Regions [0.0]
This research aims to allow automated monitoring for largescale infrastructure projects, such as railways, to determine reliable metrics that define and predict the direction construction initiatives could take.
By utilizing photogrammetric techniques on available satellite data to create 3D Meshes and Digital Surface Models (DSM) we hope to effectively predict transport routes.
arXiv Detail & Related papers (2020-09-01T02:11:14Z) - Generating Interpretable Poverty Maps using Object Detection in
Satellite Images [80.35540308137043]
We demonstrate an interpretable computational framework to accurately predict poverty at a local level by applying object detectors to satellite images.
Using the weighted counts of objects as features, we achieve 0.539 Pearson's r2 in predicting village-level poverty in Uganda, a 31% improvement over existing (and less interpretable) benchmarks.
arXiv Detail & Related papers (2020-02-05T02:50:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.