On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms
- URL: http://arxiv.org/abs/2310.15848v4
- Date: Sun, 18 Aug 2024 05:05:19 GMT
- Title: On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms
- Authors: Surbhi Mittal, Kartik Thakral, Richa Singh, Mayank Vatsa, Tamar Glaser, Cristian Canton Ferrer, Tal Hassner,
- Abstract summary: There have been severe concerns over the trustworthiness of AI technologies.
Machine and deep learning algorithms depend heavily on the data used during their development.
We propose a framework to evaluate the datasets through a responsible rubric.
- Score: 56.119374302685934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) has made its way into various scientific fields, providing astonishing improvements over existing algorithms for a wide variety of tasks. In recent years, there have been severe concerns over the trustworthiness of AI technologies. The scientific community has focused on the development of trustworthy AI algorithms. However, machine and deep learning algorithms, popular in the AI community today, depend heavily on the data used during their development. These learning algorithms identify patterns in the data, learning the behavioral objective. Any flaws in the data have the potential to translate directly into algorithms. In this study, we discuss the importance of Responsible Machine Learning Datasets and propose a framework to evaluate the datasets through a responsible rubric. While existing work focuses on the post-hoc evaluation of algorithms for their trustworthiness, we provide a framework that considers the data component separately to understand its role in the algorithm. We discuss responsible datasets through the lens of fairness, privacy, and regulatory compliance and provide recommendations for constructing future datasets. After surveying over 100 datasets, we use 60 datasets for analysis and demonstrate that none of these datasets is immune to issues of fairness, privacy preservation, and regulatory compliance. We provide modifications to the ``datasheets for datasets" with important additions for improved dataset documentation. With governments around the world regularizing data protection laws, the method for the creation of datasets in the scientific community requires revision. We believe this study is timely and relevant in today's era of AI.
Related papers
- Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - Collect, Measure, Repeat: Reliability Factors for Responsible AI Data
Collection [8.12993269922936]
We argue that data collection for AI should be performed in a responsible manner.
We propose a Responsible AI (RAI) methodology designed to guide the data collection with a set of metrics.
arXiv Detail & Related papers (2023-08-22T18:01:27Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - rWISDM: Repaired WISDM, a Public Dataset for Human Activity Recognition [0.0]
Human Activity Recognition (HAR) has become a spotlight in recent scientific research because of its applications in various domains such as healthcare, athletic competitions, smart cities, and smart home.
This paper presents the methods by which other researchers may identify and correct similar problems in public datasets.
arXiv Detail & Related papers (2023-05-17T13:55:50Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
Recently, the role of data in AI has been significantly magnified, giving rise to the emerging concept of data-centric AI.
In this survey, we discuss the necessity of data-centric AI, followed by a holistic view of three general data-centric goals.
We believe this is the first comprehensive survey that provides a global view of a spectrum of tasks across various stages of the data lifecycle.
arXiv Detail & Related papers (2023-03-17T17:44:56Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Representative & Fair Synthetic Data [68.8204255655161]
We present a framework to incorporate fairness constraints into the self-supervised learning process.
We generate a representative as well as fair version of the UCI Adult census data set.
We consider representative & fair synthetic data a promising future building block to teach algorithms not on historic worlds, but rather on the worlds that we strive to live in.
arXiv Detail & Related papers (2021-04-07T09:19:46Z) - Towards Accountability for Machine Learning Datasets: Practices from
Software Engineering and Infrastructure [9.825840279544465]
datasets which empower machine learning are often used, shared and re-used with little visibility into the processes of deliberation which led to their creation.
This paper introduces a rigorous framework for dataset development transparency which supports decision-making and accountability.
arXiv Detail & Related papers (2020-10-23T01:57:42Z) - Bringing the People Back In: Contesting Benchmark Machine Learning
Datasets [11.00769651520502]
We outline a research program - a genealogy of machine learning data - for investigating how and why these datasets have been created.
We describe the ways in which benchmark datasets in machine learning operate as infrastructure and pose four research questions for these datasets.
arXiv Detail & Related papers (2020-07-14T23:22:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.