論文の概要: Efficient Folded Attention for 3D Medical Image Reconstruction and
Segmentation
- arxiv url: http://arxiv.org/abs/2009.05576v1
- Date: Sun, 13 Sep 2020 19:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 03:16:33.547731
- Title: Efficient Folded Attention for 3D Medical Image Reconstruction and
Segmentation
- Title(参考訳): 3次元医用画像再構成と分割のための効率的な折りたたみ注意
- Authors: Hang Zhang, Jinwei Zhang, Rongguang Wang, Qihao Zhang, Pascal
Spincemaille, Thanh D. Nguyen, and Yi Wang
- Abstract要約: 本稿では,従来の3次元医用画像における注意方法の計算効率を向上させるために,畳み込み注意(FA)アプローチを提案する。
FAは計算複雑性とGPUメモリ消費を大幅に削減することができる。
3次元MIRとMISの2つの課題に対して,本手法の優位性を示す。
- 参考スコア(独自算出の注目度): 8.35714852765804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, 3D medical image reconstruction (MIR) and segmentation (MIS) based
on deep neural networks have been developed with promising results, and
attention mechanism has been further designed to capture global contextual
information for performance enhancement. However, the large size of 3D volume
images poses a great computational challenge to traditional attention methods.
In this paper, we propose a folded attention (FA) approach to improve the
computational efficiency of traditional attention methods on 3D medical images.
The main idea is that we apply tensor folding and unfolding operations with
four permutations to build four small sub-affinity matrices to approximate the
original affinity matrix. Through four consecutive sub-attention modules of FA,
each element in the feature tensor can aggregate spatial-channel information
from all other elements. Compared to traditional attention methods, with
moderate improvement of accuracy, FA can substantially reduce the computational
complexity and GPU memory consumption. We demonstrate the superiority of our
method on two challenging tasks for 3D MIR and MIS, which are quantitative
susceptibility mapping and multiple sclerosis lesion segmentation.
- Abstract(参考訳): 近年,深層ニューラルネットワークに基づく3次元医用画像再構成(MIR)とセグメンテーション(MIS)が有望な成果で開発され,パフォーマンス向上のためのグローバルなコンテキスト情報収集のためのアテンション機構がさらに設計されている。
しかし,3次元ボリューム画像の大規模化は,従来の注目手法にとって大きな課題となる。
本稿では,3次元医用画像における従来の注意手法の計算効率を向上させるためのfoldd attention (fa) 手法を提案する。
主な考え方は、4つの置換を持つテンソル折り畳みと展開演算を適用し、4つの小さな部分親和行列を構築して元の親和行列を近似するということである。
FAの4つの連続的なサブアテンションモジュールを通して、特徴テンソルの各要素は他のすべての要素から空間チャネル情報を集約することができる。
従来の注意法と比較すると、精度の適度な改善により、FAは計算複雑性とGPUメモリ消費を大幅に削減できる。
定量的感受性マッピングと多発性硬化性病変のセグメンテーションであるMISとMISの2つの課題に対して,本手法の優位性を示す。
関連論文リスト
- Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
医用画像分割のためのエンドツーエンドハイブリッドアーキテクチャを提案する。
ハミルトン変分オートエンコーダ(HVAE)と識別正則化を用いて生成画像の品質を向上する。
我々のアーキテクチャはスライス・バイ・スライス・ベースで3Dボリュームを分割し、リッチな拡張データセットをカプセル化する。
論文 参考訳(メタデータ) (2024-06-17T15:42:08Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3次元医用画像のセグメンテーションは、疾患の診断と治療計画に重要な意味を持つ課題である。
近年の深層学習の進歩は、完全に教師付き医療画像のセグメンテーションを著しく強化している。
本稿では,3次元医用画像に特化して設計された,確率的適応型弱教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-05T00:46:53Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - End-to-End Multi-View Structure-from-Motion with Hypercorrelation
Volumes [7.99536002595393]
この問題に対処するために深層学習技術が提案されている。
我々は現在最先端の2次元構造であるSfM(SfM)のアプローチを改善している。
一般的なマルチビューのケースに拡張し、複雑なベンチマークデータセットDTUで評価する。
論文 参考訳(メタデータ) (2022-09-14T20:58:44Z) - Dynamic Linear Transformer for 3D Biomedical Image Segmentation [2.440109381823186]
トランスフォーマーベースのニューラルネットワークは、多くのバイオメディカルイメージセグメンテーションタスクにおいて、有望なパフォーマンスを上回っている。
3次元トランスを用いた分割法の主な課題は、自己認識機構によって引き起こされる二次的複雑性である。
本稿では,エンコーダ・デコーダ方式の線形複雑化を用いた3次元医用画像分割のためのトランスフォーマアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-01T21:15:01Z) - Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes
for Medical Image Super-Resolution [56.622832383316215]
超解像CTおよびMRIスキャンのための新しいマルチヘッド畳み込みアテンションモジュールを提案する。
我々の注目モジュールは、畳み込み操作を用いて、複数の入力テンソルに対して共同的な空間チャネルアテンションを行う。
それぞれの頭部は空間的注意に対する特定の減少率に応じた受容野の大きさの異なる複数の注意ヘッドを導入している。
論文 参考訳(メタデータ) (2022-04-08T07:56:55Z) - PAENet: A Progressive Attention-Enhanced Network for 3D to 2D Retinal
Vessel Segmentation [0.0]
光コヒーレンス・トモグラフィー(OCTA)画像では3次元から2次元の網膜血管セグメンテーションは難しい問題である。
本稿では,多機能表現を抽出するアテンション機構に基づくプログレッシブ・アテンション・エンハンスメント・ネットワーク(PAENet)を提案する。
提案アルゴリズムは,従来の手法と比較して最先端性能を実現する。
論文 参考訳(メタデータ) (2021-08-26T10:27:25Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z) - Towards Reading Beyond Faces for Sparsity-Aware 4D Affect Recognition [55.15661254072032]
自動4次元表情認識(FER)のための空間認識深層ネットワークを提案する。
まず,深層学習のためのデータ制限問題に対処する新しい拡張手法を提案する。
次に、多視点での畳み込み特徴のスパース表現を計算するために、疎度対応のディープネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-08T13:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。