Efficient Folded Attention for 3D Medical Image Reconstruction and
Segmentation
- URL: http://arxiv.org/abs/2009.05576v1
- Date: Sun, 13 Sep 2020 19:18:04 GMT
- Title: Efficient Folded Attention for 3D Medical Image Reconstruction and
Segmentation
- Authors: Hang Zhang, Jinwei Zhang, Rongguang Wang, Qihao Zhang, Pascal
Spincemaille, Thanh D. Nguyen, and Yi Wang
- Abstract summary: We propose a folded attention (FA) approach to improve the computational efficiency of traditional attention methods on 3D medical images.
FA can substantially reduce the computational complexity and GPU memory consumption.
We demonstrate the superiority of our method on two challenging tasks for 3D MIR and MIS.
- Score: 8.35714852765804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, 3D medical image reconstruction (MIR) and segmentation (MIS) based
on deep neural networks have been developed with promising results, and
attention mechanism has been further designed to capture global contextual
information for performance enhancement. However, the large size of 3D volume
images poses a great computational challenge to traditional attention methods.
In this paper, we propose a folded attention (FA) approach to improve the
computational efficiency of traditional attention methods on 3D medical images.
The main idea is that we apply tensor folding and unfolding operations with
four permutations to build four small sub-affinity matrices to approximate the
original affinity matrix. Through four consecutive sub-attention modules of FA,
each element in the feature tensor can aggregate spatial-channel information
from all other elements. Compared to traditional attention methods, with
moderate improvement of accuracy, FA can substantially reduce the computational
complexity and GPU memory consumption. We demonstrate the superiority of our
method on two challenging tasks for 3D MIR and MIS, which are quantitative
susceptibility mapping and multiple sclerosis lesion segmentation.
Related papers
- Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
We propose an end-to-end hybrid architecture for medical image segmentation.
We use Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images.
Our architecture operates on a slice-by-slice basis to segment 3D volumes, capitilizing on the richly augmented dataset.
arXiv Detail & Related papers (2024-06-17T15:42:08Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - End-to-End Multi-View Structure-from-Motion with Hypercorrelation
Volumes [7.99536002595393]
Deep learning techniques have been proposed to tackle this problem.
We improve on the state-of-the-art two-view structure-from-motion(SfM) approach.
We extend it to the general multi-view case and evaluate it on the complex benchmark dataset DTU.
arXiv Detail & Related papers (2022-09-14T20:58:44Z) - Dynamic Linear Transformer for 3D Biomedical Image Segmentation [2.440109381823186]
Transformer-based neural networks have surpassed promising performance on many biomedical image segmentation tasks.
Main challenge for 3D transformer-based segmentation methods is the quadratic complexity introduced by the self-attention mechanism.
We propose a novel transformer architecture for 3D medical image segmentation using an encoder-decoder style architecture with linear complexity.
arXiv Detail & Related papers (2022-06-01T21:15:01Z) - Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes
for Medical Image Super-Resolution [56.622832383316215]
We propose a novel multi-head convolutional attention module to super-resolve CT and MRI scans.
Our attention module uses the convolution operation to perform joint spatial-channel attention on multiple input tensors.
We introduce multiple attention heads, each head having a distinct receptive field size corresponding to a particular reduction rate for the spatial attention.
arXiv Detail & Related papers (2022-04-08T07:56:55Z) - PAENet: A Progressive Attention-Enhanced Network for 3D to 2D Retinal
Vessel Segmentation [0.0]
3D to 2D retinal vessel segmentation is a challenging problem in Optical Coherence Tomography Angiography ( OCTA) images.
We propose a Progressive Attention-Enhanced Network (PAENet) based on attention mechanisms to extract rich feature representation.
Our proposed algorithm achieves state-of-the-art performance compared with previous methods.
arXiv Detail & Related papers (2021-08-26T10:27:25Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Towards Reading Beyond Faces for Sparsity-Aware 4D Affect Recognition [55.15661254072032]
We present a sparsity-aware deep network for automatic 4D facial expression recognition (FER)
We first propose a novel augmentation method to combat the data limitation problem for deep learning.
We then present a sparsity-aware deep network to compute the sparse representations of convolutional features over multi-views.
arXiv Detail & Related papers (2020-02-08T13:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.