論文の概要: Applications of Deep Neural Networks with Keras
- arxiv url: http://arxiv.org/abs/2009.05673v5
- Date: Tue, 17 May 2022 01:40:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 20:59:51.672806
- Title: Applications of Deep Neural Networks with Keras
- Title(参考訳): kerasを用いた深層ニューラルネットワークの応用
- Authors: Jeff Heaton
- Abstract要約: ディープラーニングにより、ニューラルネットワークは人間の脳の機能のような方法で情報の階層を学習することができる。
本コースでは,従来のニューラルネットワーク構造であるConversa Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adrial Networks (GAN)を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning is a group of exciting new technologies for neural networks.
Through a combination of advanced training techniques and neural network
architectural components, it is now possible to create neural networks that can
handle tabular data, images, text, and audio as both input and output. Deep
learning allows a neural network to learn hierarchies of information in a way
that is like the function of the human brain. This course will introduce the
student to classic neural network structures, Convolution Neural Networks
(CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU),
General Adversarial Networks (GAN), and reinforcement learning. Application of
these architectures to computer vision, time series, security, natural language
processing (NLP), and data generation will be covered. High-Performance
Computing (HPC) aspects will demonstrate how deep learning can be leveraged
both on graphical processing units (GPUs), as well as grids. Focus is primarily
upon the application of deep learning to problems, with some introduction to
mathematical foundations. Readers will use the Python programming language to
implement deep learning using Google TensorFlow and Keras. It is not necessary
to know Python prior to this book; however, familiarity with at least one
programming language is assumed.
- Abstract(参考訳): ディープラーニングは、ニューラルネットワークのためのエキサイティングな新技術のグループだ。
高度なトレーニング技術とニューラルネットワークアーキテクチャコンポーネントを組み合わせることで、入力と出力の両方として表データ、画像、テキスト、オーディオを処理するニューラルネットワークを作成できるようになった。
深層学習は、ニューラルネットワークが人間の脳の機能のような方法で情報の階層を学習することを可能にする。
このコースでは、古典的なニューラルネットワーク構造、畳み込みニューラルネットワーク(CNN)、Long Short-Term Memory(LSTM)、Gated Recurrent Neural Networks(GRU)、General Adversarial Networks(GAN)、強化学習を紹介する。
これらのアーキテクチャをコンピュータビジョン、時系列、セキュリティ、自然言語処理(NLP)、データ生成に適用する。
ハイパフォーマンスコンピューティング(HPC)の側面は、グラフィカル処理ユニット(GPU)とグリッドの両方でディープラーニングをどのように活用できるかを示す。
主に問題へのディープラーニングの適用に焦点が当てられ、数学的基礎が導入された。
読者はPythonプログラミング言語を使用して、Google TensorFlowとKerasを使ってディープラーニングを実装する。
この本に先立ってPythonを知る必要はないが、少なくとも1つのプログラミング言語に精通していると仮定される。
関連論文リスト
- A Sparse Quantized Hopfield Network for Online-Continual Memory [0.0]
神経系は、ノイズの多いデータポイントのストリームが非独立で同一に分散された(非i.d.)方法で提示されるオンライン学習を行う。
一方、ディープネットワークは、通常非ローカルな学習アルゴリズムを使用し、オフライン、非ノイズ、すなわち設定で訓練される。
我々は、スパース量子ホップフィールドネットワーク(SQHN)と呼ばれる新しいニューラルネットワークにこの種のモデルを実装する。
論文 参考訳(メタデータ) (2023-07-27T17:46:17Z) - How and what to learn:The modes of machine learning [7.085027463060304]
本稿では, 重み経路解析(WPA)と呼ばれる新しい手法を提案し, 多層ニューラルネットワークのメカニズムについて検討する。
WPAは、ニューラルネットワークが情報を「ホログラフィック」な方法で保存し、活用していることを示し、ネットワークはすべてのトレーニングサンプルをコヒーレントな構造にエンコードする。
隠れた層状ニューロンは学習過程の後半で異なるクラスに自己組織化することが判明した。
論文 参考訳(メタデータ) (2022-02-28T14:39:06Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
ディープニューラルネットワークのトレーニングに使用されるエラーアルゴリズムのバックプロパゲーションは、ディープラーニングの成功に不可欠である。
最近の研究は、このアイデアを、局所的な計算だけでニューラルネットワークを訓練できる汎用アルゴリズムへと発展させた。
等価ディープニューラルネットワークに対する予測符号化ネットワークの柔軟性が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-02-18T22:57:03Z) - Training Spiking Neural Networks Using Lessons From Deep Learning [28.827506468167652]
シナプスとニューロンの内部構造は、ディープラーニングの未来を垣間見ることができます。
いくつかのアイデアはニューロモルフィックエンジニアリングコミュニティでよく受け入れられ、一般的に使われているが、他のアイデアはここで初めて提示または正当化されている。
PythonパッケージであるsnnTorchを使って、この論文を補完する一連のインタラクティブチュートリアルも利用可能である。
論文 参考訳(メタデータ) (2021-09-27T09:28:04Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - A Practical Tutorial on Graph Neural Networks [49.919443059032226]
グラフニューラルネットワーク(GNN)は、人工知能(AI)分野において最近人気が高まっている。
このチュートリアルでは、GNNのパワーとノベルティをAI実践者に公開している。
論文 参考訳(メタデータ) (2020-10-11T12:36:17Z) - Neurocoder: Learning General-Purpose Computation Using Stored Neural
Programs [64.56890245622822]
ニューロコーダ(Neurocoder)は、汎用計算機の全く新しいクラスである。
共有可能なモジュール型プログラムのセットから関連するプログラムを構成することで、データ応答性のある方法で“コード”を行う。
モジュールプログラムを学習し、パターンシフトを厳しく処理し、新しいプログラムが学習されると、古いプログラムを記憶する新しい能力を示す。
論文 参考訳(メタデータ) (2020-09-24T01:39:16Z) - Locality Guided Neural Networks for Explainable Artificial Intelligence [12.435539489388708]
LGNN(Locality Guided Neural Network)と呼ばれる,バック伝搬のための新しいアルゴリズムを提案する。
LGNNはディープネットワークの各層内の隣接ニューロン間の局所性を保っている。
実験では,CIFAR100 上の画像分類のための様々な VGG と Wide ResNet (WRN) ネットワークを訓練した。
論文 参考訳(メタデータ) (2020-07-12T23:45:51Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
この研究で、中間的神経表現がニューラルネットワークにさらなる柔軟性をもたらすことを実証する。
提案手法は, 生の入力と比較して, サンプルの複雑度を向上できることを示す。
この結果から, 深度が深層学習においてなぜ重要かという新たな視点が得られた。
論文 参考訳(メタデータ) (2020-06-24T02:44:54Z) - Deep Polynomial Neural Networks [77.70761658507507]
$Pi$Netsは拡張に基づいた関数近似の新しいクラスである。
$Pi$Netsは、画像生成、顔検証、および3Dメッシュ表現学習という3つの困難なタスクで、最先端の結果を生成する。
論文 参考訳(メタデータ) (2020-06-20T16:23:32Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。