Applications of Deep Neural Networks with Keras
- URL: http://arxiv.org/abs/2009.05673v5
- Date: Tue, 17 May 2022 01:40:36 GMT
- Title: Applications of Deep Neural Networks with Keras
- Authors: Jeff Heaton
- Abstract summary: Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain.
This course will introduce the student to classic neural network structures, Conversa Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adrial Networks (GAN)
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning is a group of exciting new technologies for neural networks.
Through a combination of advanced training techniques and neural network
architectural components, it is now possible to create neural networks that can
handle tabular data, images, text, and audio as both input and output. Deep
learning allows a neural network to learn hierarchies of information in a way
that is like the function of the human brain. This course will introduce the
student to classic neural network structures, Convolution Neural Networks
(CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU),
General Adversarial Networks (GAN), and reinforcement learning. Application of
these architectures to computer vision, time series, security, natural language
processing (NLP), and data generation will be covered. High-Performance
Computing (HPC) aspects will demonstrate how deep learning can be leveraged
both on graphical processing units (GPUs), as well as grids. Focus is primarily
upon the application of deep learning to problems, with some introduction to
mathematical foundations. Readers will use the Python programming language to
implement deep learning using Google TensorFlow and Keras. It is not necessary
to know Python prior to this book; however, familiarity with at least one
programming language is assumed.
Related papers
- A Sparse Quantized Hopfield Network for Online-Continual Memory [0.0]
Nervous systems learn online where a stream of noisy data points are presented in a non-independent, identically distributed (non-i.i.d.) way.
Deep networks, on the other hand, typically use non-local learning algorithms and are trained in an offline, non-noisy, i.i.d. setting.
We implement this kind of model in a novel neural network called the Sparse Quantized Hopfield Network (SQHN)
arXiv Detail & Related papers (2023-07-27T17:46:17Z) - How and what to learn:The modes of machine learning [7.085027463060304]
We propose a new approach, namely the weight pathway analysis (WPA), to study the mechanism of multilayer neural networks.
WPA shows that a neural network stores and utilizes information in a "holographic" way, that is, the network encodes all training samples in a coherent structure.
It is found that hidden-layer neurons self-organize into different classes in the later stages of the learning process.
arXiv Detail & Related papers (2022-02-28T14:39:06Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
The backpropagation of error algorithm used to train deep neural networks has been fundamental to the successes of deep learning.
Recent work has developed the idea into a general-purpose algorithm able to train neural networks using only local computations.
We show the substantially greater flexibility of predictive coding networks against equivalent deep neural networks.
arXiv Detail & Related papers (2022-02-18T22:57:03Z) - Training Spiking Neural Networks Using Lessons From Deep Learning [28.827506468167652]
The inner workings of our synapses and neurons provide a glimpse at what the future of deep learning might look like.
Some ideas are well accepted and commonly used amongst the neuromorphic engineering community, while others are presented or justified for the first time here.
A series of companion interactive tutorials complementary to this paper using our Python package, snnTorch, are also made available.
arXiv Detail & Related papers (2021-09-27T09:28:04Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - A Practical Tutorial on Graph Neural Networks [49.919443059032226]
Graph neural networks (GNNs) have recently grown in popularity in the field of artificial intelligence (AI)
This tutorial exposes the power and novelty of GNNs to AI practitioners.
arXiv Detail & Related papers (2020-10-11T12:36:17Z) - Neurocoder: Learning General-Purpose Computation Using Stored Neural
Programs [64.56890245622822]
Neurocoder is an entirely new class of general-purpose conditional computational machines.
It "codes" itself in a data-responsive way by composing relevant programs from a set of shareable, modular programs.
We show new capacity to learn modular programs, handle severe pattern shifts and remember old programs as new ones are learnt.
arXiv Detail & Related papers (2020-09-24T01:39:16Z) - Locality Guided Neural Networks for Explainable Artificial Intelligence [12.435539489388708]
We propose a novel algorithm for back propagation, called Locality Guided Neural Network(LGNN)
LGNN preserves locality between neighbouring neurons within each layer of a deep network.
In our experiments, we train various VGG and Wide ResNet (WRN) networks for image classification on CIFAR100.
arXiv Detail & Related papers (2020-07-12T23:45:51Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks.
We show that neural representation can achieve improved sample complexities compared with the raw input.
Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
arXiv Detail & Related papers (2020-06-24T02:44:54Z) - Deep Polynomial Neural Networks [77.70761658507507]
$Pi$Nets are a new class of function approximators based on expansions.
$Pi$Nets produce state-the-art results in three challenging tasks, i.e. image generation, face verification and 3D mesh representation learning.
arXiv Detail & Related papers (2020-06-20T16:23:32Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.