A Sparse Quantized Hopfield Network for Online-Continual Memory
- URL: http://arxiv.org/abs/2307.15040v1
- Date: Thu, 27 Jul 2023 17:46:17 GMT
- Title: A Sparse Quantized Hopfield Network for Online-Continual Memory
- Authors: Nick Alonso and Jeff Krichmar
- Abstract summary: Nervous systems learn online where a stream of noisy data points are presented in a non-independent, identically distributed (non-i.i.d.) way.
Deep networks, on the other hand, typically use non-local learning algorithms and are trained in an offline, non-noisy, i.i.d. setting.
We implement this kind of model in a novel neural network called the Sparse Quantized Hopfield Network (SQHN)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An important difference between brains and deep neural networks is the way
they learn. Nervous systems learn online where a stream of noisy data points
are presented in a non-independent, identically distributed (non-i.i.d.) way.
Further, synaptic plasticity in the brain depends only on information local to
synapses. Deep networks, on the other hand, typically use non-local learning
algorithms and are trained in an offline, non-noisy, i.i.d. setting.
Understanding how neural networks learn under the same constraints as the brain
is an open problem for neuroscience and neuromorphic computing. A standard
approach to this problem has yet to be established. In this paper, we propose
that discrete graphical models that learn via an online maximum a posteriori
learning algorithm could provide such an approach. We implement this kind of
model in a novel neural network called the Sparse Quantized Hopfield Network
(SQHN). We show that SQHNs outperform state-of-the-art neural networks on
associative memory tasks, outperform these models in online, non-i.i.d.
settings, learn efficiently with noisy inputs, and are better than baselines on
a novel episodic memory task.
Related papers
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - How and what to learn:The modes of machine learning [7.085027463060304]
We propose a new approach, namely the weight pathway analysis (WPA), to study the mechanism of multilayer neural networks.
WPA shows that a neural network stores and utilizes information in a "holographic" way, that is, the network encodes all training samples in a coherent structure.
It is found that hidden-layer neurons self-organize into different classes in the later stages of the learning process.
arXiv Detail & Related papers (2022-02-28T14:39:06Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
artificial neural variability (ANV) helps artificial neural networks learn some advantages from natural'' neural networks.
ANV plays as an implicit regularizer of the mutual information between the training data and the learned model.
It can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
arXiv Detail & Related papers (2020-11-12T06:06:33Z) - Brain-Inspired Learning on Neuromorphic Substrates [5.279475826661643]
This article provides a mathematical framework for the design of practical online learning algorithms for neuromorphic substrates.
Specifically, we show a direct connection between Real-Time Recurrent Learning (RTRL) and biologically plausible learning rules for training Spiking Neural Networks (SNNs)
We motivate a sparse approximation based on block-diagonal Jacobians, which reduces the algorithm's computational complexity.
arXiv Detail & Related papers (2020-10-22T17:56:59Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
Differentiable neural computers extend artificial neural networks with an explicit memory without interference.
We achieve some of the computational capabilities of differentiable neural computers with a model that can be trained very efficiently.
arXiv Detail & Related papers (2020-09-14T12:01:30Z) - Locality Guided Neural Networks for Explainable Artificial Intelligence [12.435539489388708]
We propose a novel algorithm for back propagation, called Locality Guided Neural Network(LGNN)
LGNN preserves locality between neighbouring neurons within each layer of a deep network.
In our experiments, we train various VGG and Wide ResNet (WRN) networks for image classification on CIFAR100.
arXiv Detail & Related papers (2020-07-12T23:45:51Z) - Interaction Networks: Using a Reinforcement Learner to train other
Machine Learning algorithms [0.0]
The wiring of neurons in the brain is more flexible than the wiring of connections in contemporary artificial neural networks.
An Interaction Network consists of a collection of conventional neural networks, a set of memory locations, and a reinforcement learner.
arXiv Detail & Related papers (2020-06-15T15:03:53Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.