QRnet: optimal regulator design with LQR-augmented neural networks
- URL: http://arxiv.org/abs/2009.05686v2
- Date: Mon, 16 Nov 2020 18:39:17 GMT
- Title: QRnet: optimal regulator design with LQR-augmented neural networks
- Authors: Tenavi Nakamura-Zimmerer, Qi Gong, Wei Kang
- Abstract summary: We propose a new computational method for designing optimal regulators for high-dimensional nonlinear systems.
The proposed approach leverages physics-informed machine learning to solve high-dimensional Hamilton-Jacobi-Bellman equations.
We train the augmented models on data generated without discretizing the state space, enabling application to high-dimensional problems.
- Score: 2.8725913509167156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose a new computational method for designing optimal
regulators for high-dimensional nonlinear systems. The proposed approach
leverages physics-informed machine learning to solve high-dimensional
Hamilton-Jacobi-Bellman equations arising in optimal feedback control.
Concretely, we augment linear quadratic regulators with neural networks to
handle nonlinearities. We train the augmented models on data generated without
discretizing the state space, enabling application to high-dimensional
problems. We use the proposed method to design a candidate optimal regulator
for an unstable Burgers' equation, and through this example, demonstrate
improved robustness and accuracy compared to existing neural network
formulations.
Related papers
- RandONet: Shallow-Networks with Random Projections for learning linear and nonlinear operators [0.0]
We present Random Projection-based Operator Networks (RandONets)
RandONets are shallow networks with random projections that learn linear and nonlinear operators.
We show, that for this particular task, RandONets outperform, both in terms of numerical approximation accuracy and computational cost, the vanilla" DeepOnets.
arXiv Detail & Related papers (2024-06-08T13:20:48Z) - A neural network-based approach to hybrid systems identification for control [4.324244627273018]
We consider the problem of designing a machine learning-based model of an unknown dynamical system from a finite number of (state-input)-successor state data points.
We adopt a neural network (NN) architecture that, once suitably trained, yields a hybrid system with continuous piecewise-affine dynamics.
We show that a careful choice of our NN's weights produces a hybrid system model with structural properties that are highly favorable when used as part of a finite horizon optimal control problem.
arXiv Detail & Related papers (2024-04-02T10:16:30Z) - Optimization Over Trained Neural Networks: Taking a Relaxing Walk [4.517039147450688]
We propose a more scalable solver based on exploring global and local linear relaxations of the neural network model.
Our solver is competitive with a state-of-the-art MILP solver and the prior while producing better solutions with increases in input, depth, and number of neurons.
arXiv Detail & Related papers (2024-01-07T11:15:00Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Pontryagin Optimal Control via Neural Networks [19.546571122359534]
We integrate Neural Networks with the Pontryagin's Maximum Principle (PMP), and propose a sample efficient framework NN-PMP-Gradient.
The resulting controller can be implemented for systems with unknown and complex dynamics.
Compared with the widely applied model-free and model-based reinforcement learning (RL) algorithms, our NN-PMP-Gradient achieves higher sample-efficiency and performance in terms of control objectives.
arXiv Detail & Related papers (2022-12-30T06:47:03Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) systems with discrete lens arrays have received great attention.
In this work, we investigate the joint design of a beam precoding matrix for mmWave MU-MIMO systems with DLA.
arXiv Detail & Related papers (2021-01-05T03:55:04Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks [20.44438519046223]
We show that wide neural networks satisfy the PL$*$ condition, which explains the (S)GD convergence to a global minimum.
We show that wide neural networks satisfy the PL$*$ condition, which explains the (S)GD convergence to a global minimum.
arXiv Detail & Related papers (2020-02-29T17:18:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.