An approach to human iris recognition using quantitative analysis of
image features and machine learning
- URL: http://arxiv.org/abs/2009.05880v1
- Date: Sat, 12 Sep 2020 23:23:33 GMT
- Title: An approach to human iris recognition using quantitative analysis of
image features and machine learning
- Authors: Abolfazl Zargari Khuzani, Najmeh Mashhadi, Morteza Heidari, Donya
Khaledyan
- Abstract summary: In this paper, an efficient framework for iris recognition is proposed in four steps.
The results confirm that the proposed scheme can provide a reliable prediction with an accuracy of up to 99.64%.
- Score: 0.5243460995467893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Iris pattern is a unique biological feature for each individual, making
it a valuable and powerful tool for human identification. In this paper, an
efficient framework for iris recognition is proposed in four steps. (1) Iris
segmentation (using a relative total variation combined with Coarse Iris
Localization), (2) feature extraction (using Shape&density, FFT, GLCM, GLDM,
and Wavelet), (3) feature reduction (employing Kernel-PCA) and (4)
classification (applying multi-layer neural network) to classify 2000 iris
images of CASIA-Iris-Interval dataset obtained from 200 volunteers. The results
confirm that the proposed scheme can provide a reliable prediction with an
accuracy of up to 99.64%.
Related papers
- On the Feasibility of Creating Iris Periocular Morphed Images [9.021226651004055]
This work proposes an end-to-end framework to produce iris morphs at the image level.
It considers different stages such as pair subject selection, segmentation, morph creation, and a new iris recognition system.
The results show that this approach obtained very realistic images that can confuse conventional iris recognition systems.
arXiv Detail & Related papers (2024-08-24T06:48:46Z) - Iris-SAM: Iris Segmentation Using a Foundation Model [10.902536447343465]
We develop a pixel-level iris segmentation model from a foundational model, viz., Segment Anything Model (SAM)
The primary contribution of this work lies in the integration of different loss functions during the fine-tuning of SAM on ocular images.
Experiments on ND-IRIS-0405, CASIA-Iris-Interval-v3, and IIT-Delhi-Iris datasets convey the efficacy of the trained model for the task of iris segmentation.
arXiv Detail & Related papers (2024-02-09T16:08:16Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Artificial Pupil Dilation for Data Augmentation in Iris Semantic
Segmentation [0.0]
Modern approaches to iris recognition utilize deep learning to segment the valid portion of the iris from the rest of the eye.
This paper aims to improve the accuracy of iris semantic segmentation systems by introducing a novel data augmentation technique.
arXiv Detail & Related papers (2022-12-24T13:31:56Z) - Super-Resolution and Image Re-projection for Iris Recognition [67.42500312968455]
Convolutional Neural Networks (CNNs) using different deep learning approaches attempt to recover realistic texture and fine grained details from low resolution images.
In this work we explore the viability of these approaches for iris Super-Resolution (SR) in an iris recognition environment.
Results show that CNNs and image re-projection can improve the results specially for the accuracy of recognition systems.
arXiv Detail & Related papers (2022-10-20T09:46:23Z) - Iris Recognition Based on SIFT Features [63.07521951102555]
We use the Scale Invariant Feature Transformation (SIFT) for recognition using iris images.
We extract characteristic SIFT feature points in scale space and perform matching based on the texture information around the feature points using the SIFT operator.
We also show the complement between the SIFT approach and a popular matching approach based on transformation to polar coordinates and Log-Gabor wavelets.
arXiv Detail & Related papers (2021-10-30T04:55:33Z) - Toward Accurate and Reliable Iris Segmentation Using Uncertainty
Learning [96.72850130126294]
We propose an Iris U-transformer (IrisUsformer) for accurate and reliable iris segmentation.
For better accuracy, we elaborately design IrisUsformer by adopting position-sensitive operation and re-packaging transformer block.
We show that IrisUsformer achieves better segmentation accuracy using 35% MACs of the SOTA IrisParseNet.
arXiv Detail & Related papers (2021-10-20T01:37:19Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z) - Segmentation-Aware and Adaptive Iris Recognition [24.125681602124477]
The quality of iris images acquired at-a-distance or under less constrained imaging environments is known to degrade the iris matching accuracy.
The periocular information is inherently embedded in such iris images and can be exploited to assist in the iris recognition under such non-ideal scenarios.
This paper presents such a segmentation-assisted adaptive framework for more accurate less-constrained iris recognition.
arXiv Detail & Related papers (2019-12-31T04:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.