論文の概要: Deep Detection for Face Manipulation
- arxiv url: http://arxiv.org/abs/2009.05934v1
- Date: Sun, 13 Sep 2020 06:48:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 02:42:13.903990
- Title: Deep Detection for Face Manipulation
- Title(参考訳): 顔操作の深部検出
- Authors: Disheng Feng, Xuequan Lu, Xufeng Lin
- Abstract要約: 顔の操作を検出する深層学習手法を提案する。
特徴抽出と二項分類の2段階からなる。
その結果,ほとんどの場合,最先端技術よりも優れた性能が得られることがわかった。
- 参考スコア(独自算出の注目度): 10.551455590390418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has become increasingly challenging to distinguish real faces from their
visually realistic fake counterparts, due to the great advances of deep
learning based face manipulation techniques in recent years. In this paper, we
introduce a deep learning method to detect face manipulation. It consists of
two stages: feature extraction and binary classification. To better distinguish
fake faces from real faces, we resort to the triplet loss function in the first
stage. We then design a simple linear classification network to bridge the
learned contrastive features with the real/fake faces. Experimental results on
public benchmark datasets demonstrate the effectiveness of this method, and
show that it generates better performance than state-of-the-art techniques in
most cases.
- Abstract(参考訳): 近年、ディープラーニングによる顔操作技術が飛躍的に進歩し、現実の顔と視覚的にリアルな偽顔を区別することがますます困難になっている。
本稿では,顔の操作を検出する深層学習手法を提案する。
特徴抽出と二分分類の2段階からなる。
偽顔と実顔をよりよく区別するために,第1段階での三重項損失関数を利用する。
次に、学習した対照的な特徴を実/偽の顔にブリッジする単純な線形分類ネットワークを設計する。
公開ベンチマークによる実験結果から,この手法の有効性が示され,ほとんどの場合,最先端技術よりも優れた性能が得られることが示された。
関連論文リスト
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method [77.65459419417533]
我々は,顔フォージェリを意味的文脈に配置し,意味的顔属性を変更する計算手法が顔フォージェリの源であることを定義した。
階層的なグラフで整理されたラベルの集合に各画像が関連付けられている大規模な顔偽画像データセットを構築した。
本稿では,ラベル関係を捕捉し,その優先課題を優先するセマンティクス指向の顔偽造検出手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T10:24:19Z) - FreqBlender: Enhancing DeepFake Detection by Blending Frequency Knowledge [52.63528223992634]
既存の方法は、通常、空間領域で実際の顔と偽の顔とを混ぜ合わせて合成偽の顔を生成する。
本稿では,周波数知識をブレンドして擬似フェイク顔を生成する新しい手法であるem FreqBlenderを紹介する。
実験により,DeepFake検出の高速化に本手法の有効性が示され,他の手法のプラグ・アンド・プレイ戦略の可能性が確認された。
論文 参考訳(メタデータ) (2024-04-22T04:41:42Z) - Deepfake Detection of Occluded Images Using a Patch-based Approach [1.6114012813668928]
本研究では, 顔全体と顔のパッチを用いて, 障害物の有無で実像と偽像を識別する深層学習手法を提案する。
偽画像を作成するには、FFHQイメージでStyleGANとStyleGAN2を、CelebAイメージでStarGANとPGGANをトレーニングする。
提案手法は他の手法よりも早期に高い結果に到達し、異なる構築されたデータセットにおいてSoTAの結果を0.4%-7.9%向上させる。
論文 参考訳(メタデータ) (2023-04-10T12:12:14Z) - A survey on facial image deblurring [3.6775758132528877]
顔画像がぼやけていると、顔認識などのハイレベルな視覚タスクに大きな影響を与えます。
本稿では,最近発表された顔画像の難読化手法について概説し,その大部分はディープラーニングに基づくものである。
本稿では,データセットとメトリクスにおける古典的手法の性能を示すとともに,モデルに基づく手法と学習に基づく手法の違いについて,簡単な議論を行う。
論文 参考訳(メタデータ) (2023-02-10T02:24:56Z) - Leveraging Real Talking Faces via Self-Supervision for Robust Forgery
Detection [112.96004727646115]
本研究では,実話を用いた顔操作映像の検出手法を開発した。
本手法は, クロスマニピュレーションの一般化とロバストネス実験における最先端性能を実現する。
以上の結果から、より堅牢な顔偽造検知器の開発には、自然ビデオと未表示ビデオの活用が有望な方向であることが示唆された。
論文 参考訳(メタデータ) (2022-01-18T17:14:54Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
顔のスワップ画像やビデオは、悪意ある攻撃者を惹きつけ、重要な人物の信用を損ねている。
以前のピクセルレベルのアーティファクトに基づく検出技術は、常に不明瞭なパターンにフォーカスするが、利用可能なセマンティックなヒントは無視する。
キーフィギュアの顔・スワップ検出のための外観・形状特徴をフル活用するための生体情報に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-04-28T09:35:48Z) - DeepFake Detection Based on the Discrepancy Between the Face and its
Context [94.47879216590813]
単一画像における顔のスワップやその他のアイデンティティ操作を検出する手法を提案する。
提案手法は, (i) 厳密なセマンティックセグメンテーションによって境界付けられた顔領域を考慮した顔識別ネットワークと, (ii) 顔コンテキストを考慮したコンテキスト認識ネットワークの2つのネットワークを含む。
本稿では,2つのネットワークからの認識信号を用いて,そのような不一致を検出する手法について述べる。
提案手法は,FaceForensics++,Celeb-DF-v2,DFDCベンチマークを用いて顔検出を行い,未知の手法で生成した偽物の検出を一般化する。
論文 参考訳(メタデータ) (2020-08-27T17:04:46Z) - One-Shot GAN Generated Fake Face Detection [3.3707422585608953]
本稿では,汎用的なワンショットGAN生成顔検出手法を提案する。
提案手法は,シーン理解モデルを用いて顔から文脈外オブジェクトを抽出する。
実験の結果,文脈外の特徴の観点から,偽の顔と現実の顔とを識別できることが判明した。
論文 参考訳(メタデータ) (2020-03-27T05:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。