論文の概要: Coding Facial Expressions with Gabor Wavelets (IVC Special Issue)
- arxiv url: http://arxiv.org/abs/2009.05938v1
- Date: Sun, 13 Sep 2020 07:01:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 03:16:13.921437
- Title: Coding Facial Expressions with Gabor Wavelets (IVC Special Issue)
- Title(参考訳): Gabor Waveletによる顔表情の符号化(IVC特集)
- Authors: Michael J. Lyons, Miyuki Kamachi, Jiro Gyoba
- Abstract要約: 本稿では,デジタル画像から表情に関する情報を抽出する手法を提案する。
このコードから導かれる類似性空間は、人間の観察者による画像の意味的評価から導かれるものと比較される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method for extracting information about facial expressions from
digital images. The method codes facial expression images using a
multi-orientation, multi-resolution set of Gabor filters that are
topographically ordered and approximately aligned with the face. A similarity
space derived from this code is compared with one derived from semantic ratings
of the images by human observers. Interestingly the low-dimensional structure
of the image-derived similarity space shares organizational features with the
circumplex model of affect, suggesting a bridge between categorical and
dimensional representations of facial expression. Our results also indicate
that it would be possible to construct a facial expression classifier based on
a topographically-linked multi-orientation, multi-resolution Gabor coding of
the facial images at the input stage. The significant degree of psychological
plausibility exhibited by the proposed code may also be useful in the design of
human-computer interfaces.
- Abstract(参考訳): 本稿では,デジタル画像から表情情報を抽出する手法を提案する。
本手法は、顔にほぼ整合した地形順のGaborフィルタの多方向多重解像度セットを用いて、表情画像を符号化する。
このコードから導かれる類似性空間は、人間の観察者による画像の意味的評価から導かれるものと比較される。
興味深いことに、画像由来の類似性空間の低次元構造は、感情の周囲モデルと組織的特徴を共有しており、表情のカテゴリー表現と次元表現の橋渡しを示唆している。
また,入力段階における顔画像のマルチオリエンテーション・マルチレゾリューションgabor符号化に基づく表情分類器の構築も可能であることを示唆した。
提案法によって示される有意な心理的信頼性は、ヒューマン・コンピュータ・インタフェースの設計にも有用である。
関連論文リスト
- Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
既存の表情認識法は、通常、個別のラベルを使って訓練済みのビジュアルエンコーダを微調整する。
視覚言語モデルによって生成されるテキスト埋め込みの豊富な知識は、識別的表情表現を学ぶための有望な代替手段である。
感情-中性変換を用いた知識強化FER法を提案する。
論文 参考訳(メタデータ) (2024-09-13T07:28:57Z) - GaFET: Learning Geometry-aware Facial Expression Translation from
In-The-Wild Images [55.431697263581626]
本稿では,パラメトリックな3次元顔表現をベースとした新しい顔表情翻訳フレームワークを提案する。
我々は、最先端の手法と比較して、高品質で正確な表情伝達結果を実現し、様々なポーズや複雑なテクスチャの適用性を実証する。
論文 参考訳(メタデータ) (2023-08-07T09:03:35Z) - Multi-Domain Norm-referenced Encoding Enables Data Efficient Transfer
Learning of Facial Expression Recognition [62.997667081978825]
本稿では,表情認識における伝達学習のための生物学的メカニズムを提案する。
提案アーキテクチャでは,人間の脳が,頭部形状の異なる表情を自然に認識する方法について解説する。
本モデルでは, FERGデータセットの分類精度92.15%を極端に高いデータ効率で達成する。
論文 参考訳(メタデータ) (2023-04-05T09:06:30Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
我々はこれらの課題に対処するため,ポーカー・フェイス・ビジョン・トランスフォーマー (PF-ViT) と呼ばれる新しいFERモデルを提案する。
PF-ViTは、対応するポーカーフェースを生成して、乱れを認識できない感情を静的な顔画像から分離し、認識することを目的としている。
PF-ViTはバニラビジョントランスフォーマーを使用し、そのコンポーネントは大規模な表情データセット上でMasked Autoencodeerとして事前トレーニングされている。
論文 参考訳(メタデータ) (2022-07-22T13:39:06Z) - Human Face Recognition from Part of a Facial Image based on Image
Stitching [0.0]
現在の顔認識技術のほとんどは、認識される人物の完全な顔の存在を必要とする。
そこで本研究では,欠損部を画像に示す部分のフリップで縫合する工程を採用した。
ここで適用された顔認識アルゴリズムは固有顔と幾何学的手法である。
論文 参考訳(メタデータ) (2022-03-10T19:31:57Z) - High Resolution Face Editing with Masked GAN Latent Code Optimization [0.0]
顔の編集はコンピュータビジョンコミュニティで人気のある研究トピックである。
最近の提案手法は、条件付きエンコーダデコーダであるGAN(Generative Adversarial Network)をエンドツーエンドでトレーニングするか、事前に訓練されたバニラGANジェネレータモデルの潜時空間での動作を定義するかのいずれかである。
空間的および意味的制約を伴ったGAN組み込み最適化手順を提案する。
論文 参考訳(メタデータ) (2021-03-20T08:39:41Z) - Multi-Metric Evaluation of Thermal-to-Visual Face Recognition [3.0255457622022486]
我々は、機械学習を用いて、赤外線画像から視覚スペクトル面を合成する異種・横断的な顔認識の課題に対処することを目的とする。
我々は、顔画像合成にGAN(Geneversarative Adrial Networks)を使用する能力について検討し、これらの画像の性能を事前学習した畳み込みニューラルネットワーク(CNN)を用いて検討する。
CNNを用いて抽出した特徴を顔認証と検証に応用する。
論文 参考訳(メタデータ) (2020-07-22T10:18:34Z) - Multi-Margin based Decorrelation Learning for Heterogeneous Face
Recognition [90.26023388850771]
本稿では,超球面空間におけるデコリレーション表現を抽出するディープニューラルネットワーク手法を提案する。
提案するフレームワークは,不均一表現ネットワークとデコリレーション表現学習の2つのコンポーネントに分けることができる。
2つの難解な異種顔データベースに対する実験結果から,本手法は検証タスクと認識タスクの両方において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-05-25T07:01:12Z) - InterFaceGAN: Interpreting the Disentangled Face Representation Learned
by GANs [73.27299786083424]
我々は、最先端のGANモデルによって学習された不整合顔表現を解釈するInterFaceGANというフレームワークを提案する。
まず、GANは潜在空間の線型部分空間で様々な意味学を学ぶ。
次に、異なる意味論間の相関関係について詳細な研究を行い、部分空間射影を通してそれらをよりよく解離させる。
論文 参考訳(メタデータ) (2020-05-18T18:01:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。