Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent
- URL: http://arxiv.org/abs/2009.06107v3
- Date: Sat, 26 Jun 2021 17:06:23 GMT
- Title: Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent
- Authors: Matthew Brennan and Guy Bresler and Samuel B. Hopkins and Jerry Li and
Tselil Schramm
- Abstract summary: We study two of the most popular restricted computational models, the statistical query framework and low-degree corollas, in the context of high-dimensional hypothesis testing.
Under mild conditions on the testing problem, the two classes of algorithms are essentially equivalent in power.
Asries, we obtain new statistical query lower bounds for sparse PCA, tensor PCA and several variants of the planted clique problem.
- Score: 29.684442397855197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researchers currently use a number of approaches to predict and substantiate
information-computation gaps in high-dimensional statistical estimation
problems. A prominent approach is to characterize the limits of restricted
models of computation, which on the one hand yields strong computational lower
bounds for powerful classes of algorithms and on the other hand helps guide the
development of efficient algorithms. In this paper, we study two of the most
popular restricted computational models, the statistical query framework and
low-degree polynomials, in the context of high-dimensional hypothesis testing.
Our main result is that under mild conditions on the testing problem, the two
classes of algorithms are essentially equivalent in power. As corollaries, we
obtain new statistical query lower bounds for sparse PCA, tensor PCA and
several variants of the planted clique problem.
Related papers
- Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
We revisit the question of simple-versus-simple hypothesis testing with an eye towards computational complexity.
An existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates.
arXiv Detail & Related papers (2023-11-01T04:41:16Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Statistical-Computational Trade-offs in Tensor PCA and Related Problems
via Communication Complexity [19.939448881052453]
This paper derives computational lower bounds on the run-time of memory bounded algorithms for PCA using communication complexity.
While the lower bounds do not rule out iteration-time algorithms, they do imply that many commonly-used algorithms, such as gradient descent and power method, must have a higher count when the sample size is not large enough.
arXiv Detail & Related papers (2022-04-15T15:59:43Z) - Sparse PCA: Algorithms, Adversarial Perturbations and Certificates [9.348107805982604]
We study efficient algorithms for Sparse PCA in standard statistical models.
Our goal is to achieve optimal recovery guarantees while being resilient to small perturbations.
arXiv Detail & Related papers (2020-11-12T18:58:51Z) - Computational Barriers to Estimation from Low-Degree Polynomials [81.67886161671379]
We study the power of low-degrees for the task of detecting the presence of hidden structures.
For a large class of "signal plus noise" problems, we give a user-friendly lower bound for the best possible mean squared error achievable by any degree.
As applications, we give a tight characterization of the low-degree minimum mean squared error for the planted submatrix and planted dense subgraph problems.
arXiv Detail & Related papers (2020-08-05T17:52:10Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
Principal component analysis (PCA) is a widely used dimension reduction technique in machine learning and statistics.
Various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis.
We present thresholding as a provably accurate, time, approximation algorithm for the SPCA problem.
arXiv Detail & Related papers (2020-06-23T04:25:36Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Marginal likelihood computation for model selection and hypothesis
testing: an extensive review [66.37504201165159]
This article provides a comprehensive study of the state-of-the-art of the topic.
We highlight limitations, benefits, connections and differences among the different techniques.
Problems and possible solutions with the use of improper priors are also described.
arXiv Detail & Related papers (2020-05-17T18:31:58Z) - Statistically Guided Divide-and-Conquer for Sparse Factorization of
Large Matrix [2.345015036605934]
We formulate the statistical problem as a sparse factor regression and tackle it with a divide-conquer approach.
In the first stage division, we consider both latent parallel approaches for simplifying the task into a set of co-parsesparserank estimation (CURE) problems.
In the second stage division, we innovate a stagewise learning technique, consisting of a sequence simple incremental paths, to efficiently trace out the whole solution of CURE.
arXiv Detail & Related papers (2020-03-17T19:12:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.