3D Object Detection and Tracking Based on Streaming Data
- URL: http://arxiv.org/abs/2009.06169v1
- Date: Mon, 14 Sep 2020 03:15:41 GMT
- Title: 3D Object Detection and Tracking Based on Streaming Data
- Authors: Xusen Guo, Jiangfeng Gu, Silu Guo, Zixiao Xu, Chengzhang Yang,
Shanghua Liu, Long Cheng, Kai Huang
- Abstract summary: We set up a dual-way network for 3D object detection based on ons, and then propagate predictions to non-key frames through a motion based algorithm guided by temporal information.
Our framework is not only shown to have significant improvements compared with frame-by-frame paradigm, but also proven to produce competitive results on KITTI Object Tracking Benchmark.
- Score: 9.085584050311178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent approaches for 3D object detection have made tremendous progresses due
to the development of deep learning. However, previous researches are mostly
based on individual frames, leading to limited exploitation of information
between frames. In this paper, we attempt to leverage the temporal information
in streaming data and explore 3D streaming based object detection as well as
tracking. Toward this goal, we set up a dual-way network for 3D object
detection based on keyframes, and then propagate predictions to non-key frames
through a motion based interpolation algorithm guided by temporal information.
Our framework is not only shown to have significant improvements on object
detection compared with frame-by-frame paradigm, but also proven to produce
competitive results on KITTI Object Tracking Benchmark, with 76.68% in MOTA and
81.65% in MOTP respectively.
Related papers
- SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics [0.7373617024876725]
In autonomous driving, 3D object detection provides more precise information for downstream tasks, including path planning and motion estimation.
We propose SeSame: a method aimed at enhancing semantic information in existing LiDAR-only based 3D object detection.
Experiments demonstrate the effectiveness of our method with performance improvements on the KITTI object detection benchmark.
arXiv Detail & Related papers (2024-03-11T08:17:56Z) - STTracker: Spatio-Temporal Tracker for 3D Single Object Tracking [11.901758708579642]
3D single object tracking with point clouds is a critical task in 3D computer vision.
Previous methods usually input the last two frames and use the template point cloud in previous frame and the search area point cloud in the current frame respectively.
arXiv Detail & Related papers (2023-06-30T07:25:11Z) - Predict to Detect: Prediction-guided 3D Object Detection using
Sequential Images [15.51093009875854]
We propose a novel 3D object detection model, P2D (Predict to Detect), that integrates a prediction scheme into a detection framework.
P2D predicts object information in the current frame using solely past frames to learn temporal motion features.
We then introduce a novel temporal feature aggregation method that attentively exploits Bird's-Eye-View (BEV) features based on predicted object information.
arXiv Detail & Related papers (2023-06-14T14:22:56Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - 3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature
Correlation [0.0]
3D-FCT is a Siamese network architecture that utilizes temporal information to simultaneously perform the related tasks of 3D object detection and tracking.
Our proposed method is evaluated on the KITTI tracking dataset where it is shown to provide an improvement of 5.57% mAP over a state-of-the-art approach.
arXiv Detail & Related papers (2021-10-06T06:36:29Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.