InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling
- URL: http://arxiv.org/abs/2007.08556v1
- Date: Thu, 16 Jul 2020 18:27:08 GMT
- Title: InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling
- Authors: Jun Wang, Shiyi Lan, Mingfei Gao, Larry S. Davis
- Abstract summary: We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
- Score: 65.47126868838836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time 3D object detection is crucial for autonomous cars. Achieving
promising performance with high efficiency, voxel-based approaches have
received considerable attention. However, previous methods model the input
space with features extracted from equally divided sub-regions without
considering that point cloud is generally non-uniformly distributed over the
space. To address this issue, we propose a novel 3D object detection framework
with dynamic information modeling. The proposed framework is designed in a
coarse-to-fine manner. Coarse predictions are generated in the first stage via
a voxel-based region proposal network. We introduce InfoFocus, which improves
the coarse detections by adaptively refining features guided by the information
of point cloud density. Experiments are conducted on the large-scale nuScenes
3D detection benchmark. Results show that our framework achieves the
state-of-the-art performance with 31 FPS and improves our baseline
significantly by 9.0% mAP on the nuScenes test set.
Related papers
- PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
In this paper, we revisit the local point aggregators from the perspective of allocating computational resources.
We find that the simplest pillar based models perform surprisingly well considering both accuracy and latency.
Our results challenge the common intuition that the detailed geometry modeling is essential to achieve high performance for 3D object detection.
arXiv Detail & Related papers (2023-05-08T17:59:14Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Structure Aware and Class Balanced 3D Object Detection on nuScenes
Dataset [0.0]
NuTonomy's nuScenes dataset greatly extends commonly used datasets such as KITTI.
The localization precision of this model is affected by the loss of spatial information in the downscaled feature maps.
We propose to enhance the performance of the CBGS model by designing an auxiliary network, that makes full use of the structure information of the 3D point cloud.
arXiv Detail & Related papers (2022-05-25T06:18:49Z) - Stereo Neural Vernier Caliper [57.187088191829886]
We propose a new object-centric framework for learning-based stereo 3D object detection.
We tackle a problem of how to predict a refined update given an initial 3D cuboid guess.
Our approach achieves state-of-the-art performance on the KITTI benchmark.
arXiv Detail & Related papers (2022-03-21T14:36:07Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud [20.84329063509459]
LiDAR-based 3D object detection pushes forward an immense influence on autonomous vehicles.
Due to the limitation of the intrinsic properties of LiDAR, fewer points are collected at the objects farther away from the sensor.
To address the challenge, we propose a novel two-stage 3D object detection framework, named SIENet.
arXiv Detail & Related papers (2021-03-29T07:45:09Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
We propose two variants of self-attention for contextual modeling in 3D object detection.
We first incorporate the pairwise self-attention mechanism into the current state-of-the-art BEV, voxel and point-based detectors.
Next, we propose a self-attention variant that samples a subset of the most representative features by learning deformations over randomly sampled locations.
arXiv Detail & Related papers (2021-01-07T18:30:32Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud
Object Detection [64.2159881697615]
Object detection from 3D point clouds remains a challenging task, though recent studies pushed the envelope with the deep learning techniques.
We propose a domain adaptation like approach to enhance the robustness of the feature representation.
Our simple yet effective approach fundamentally boosts the performance of 3D point cloud object detection and achieves the state-of-the-art results.
arXiv Detail & Related papers (2020-06-08T05:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.