Fairness Constraints in Semi-supervised Learning
- URL: http://arxiv.org/abs/2009.06190v1
- Date: Mon, 14 Sep 2020 04:25:59 GMT
- Title: Fairness Constraints in Semi-supervised Learning
- Authors: Tao Zhang, Tianqing Zhu, Mengde Han, Jing Li, Wanlei Zhou, Philip S.
Yu
- Abstract summary: We develop a framework for fair semi-supervised learning, which is formulated as an optimization problem.
We theoretically analyze the source of discrimination in semi-supervised learning via bias, variance and noise decomposition.
Our method is able to achieve fair semi-supervised learning, and reach a better trade-off between accuracy and fairness than fair supervised learning.
- Score: 56.48626493765908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness in machine learning has received considerable attention. However,
most studies on fair learning focus on either supervised learning or
unsupervised learning. Very few consider semi-supervised settings. Yet, in
reality, most machine learning tasks rely on large datasets that contain both
labeled and unlabeled data. One of key issues with fair learning is the balance
between fairness and accuracy. Previous studies arguing that increasing the
size of the training set can have a better trade-off. We believe that
increasing the training set with unlabeled data may achieve the similar result.
Hence, we develop a framework for fair semi-supervised learning, which is
formulated as an optimization problem. This includes classifier loss to
optimize accuracy, label propagation loss to optimize unlabled data prediction,
and fairness constraints over labeled and unlabeled data to optimize the
fairness level. The framework is conducted in logistic regression and support
vector machines under the fairness metrics of disparate impact and disparate
mistreatment. We theoretically analyze the source of discrimination in
semi-supervised learning via bias, variance and noise decomposition. Extensive
experiments show that our method is able to achieve fair semi-supervised
learning, and reach a better trade-off between accuracy and fairness than fair
supervised learning.
Related papers
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
Current methods for mitigating bias often result in information loss and an inadequate balance between accuracy and fairness.
We propose a novel methodology grounded in bilevel optimization principles.
Our deep learning-based approach concurrently optimize for both accuracy and fairness objectives.
arXiv Detail & Related papers (2024-10-21T18:53:39Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
This paper presents one-bit supervision, a novel setting of learning with fewer labels, for image classification.
We propose a multi-stage training paradigm and incorporate negative label suppression into an off-the-shelf semi-supervised learning algorithm.
In multiple benchmarks, the learning efficiency of the proposed approach surpasses that using full-bit, semi-supervised supervision.
arXiv Detail & Related papers (2023-11-26T07:39:00Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
In many machine learning (ML) tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance.
In this paper, we define the fairness-aware learning task with limited training samples as the emphfair few-shot learning problem.
We devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks.
arXiv Detail & Related papers (2023-08-28T06:31:37Z) - BiFair: Training Fair Models with Bilevel Optimization [8.2509884277533]
We develop a new training algorithm, named BiFair, which jointly minimizes for a utility, and a fairness loss of interest.
Our algorithm consistently performs better, i.e., we reach to better values of a given fairness metric under same, or higher accuracy.
arXiv Detail & Related papers (2021-06-03T22:36:17Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Leveraging Semi-Supervised Learning for Fairness using Neural Networks [49.604038072384995]
There has been a growing concern about the fairness of decision-making systems based on machine learning.
In this paper, we propose a semi-supervised algorithm using neural networks benefiting from unlabeled data.
The proposed model, called SSFair, exploits the information in the unlabeled data to mitigate the bias in the training data.
arXiv Detail & Related papers (2019-12-31T09:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.