BiFair: Training Fair Models with Bilevel Optimization
- URL: http://arxiv.org/abs/2106.04757v1
- Date: Thu, 3 Jun 2021 22:36:17 GMT
- Title: BiFair: Training Fair Models with Bilevel Optimization
- Authors: Mustafa Safa Ozdayi, Murat Kantarcioglu, Rishabh Iyer
- Abstract summary: We develop a new training algorithm, named BiFair, which jointly minimizes for a utility, and a fairness loss of interest.
Our algorithm consistently performs better, i.e., we reach to better values of a given fairness metric under same, or higher accuracy.
- Score: 8.2509884277533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prior studies have shown that, training machine learning models via empirical
loss minimization to maximize a utility metric (e.g., accuracy), might yield
models that make discriminatory predictions. To alleviate this issue, we
develop a new training algorithm, named BiFair, which jointly minimizes for a
utility, and a fairness loss of interest. Crucially, we do so without directly
modifying the training objective, e.g., by adding regularization terms. Rather,
we learn a set of weights on the training dataset, such that, training on the
weighted dataset ensures both good utility, and fairness. The dataset weights
are learned in concurrence to the model training, which is done by solving a
bilevel optimization problem using a held-out validation dataset. Overall, this
approach yields models with better fairness-utility trade-offs. Particularly,
we compare our algorithm with three other state-of-the-art fair training
algorithms over three real-world datasets, and demonstrate that, BiFair
consistently performs better, i.e., we reach to better values of a given
fairness metric under same, or higher accuracy. Further, our algorithm is
scalable. It is applicable both to simple models, such as logistic regression,
as well as more complex models, such as deep neural networks, as evidenced by
our experimental analysis.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
Current methods for mitigating bias often result in information loss and an inadequate balance between accuracy and fairness.
We propose a novel methodology grounded in bilevel optimization principles.
Our deep learning-based approach concurrently optimize for both accuracy and fairness objectives.
arXiv Detail & Related papers (2024-10-21T18:53:39Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Preserving Fairness in AI under Domain Shift [15.820660013260584]
Existing algorithms for ensuring fairness in AI use a single-shot training strategy.
We develop an algorithm to adapt a fair model to remain fair under domain shift.
arXiv Detail & Related papers (2023-01-29T06:13:40Z) - Fairness Reprogramming [42.65700878967251]
We propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique.
Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger.
We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models.
arXiv Detail & Related papers (2022-09-21T09:37:00Z) - Efficient Augmentation for Imbalanced Deep Learning [8.38844520504124]
We study a convolutional neural network's internal representation of imbalanced image data.
We measure the generalization gap between a model's feature embeddings in the training and test sets, showing that the gap is wider for minority classes.
This insight enables us to design an efficient three-phase CNN training framework for imbalanced data.
arXiv Detail & Related papers (2022-07-13T09:43:17Z) - FORML: Learning to Reweight Data for Fairness [2.105564340986074]
We introduce Fairness Optimized Reweighting via Meta-Learning (FORML)
FORML balances fairness constraints and accuracy by jointly optimizing training sample weights and a neural network's parameters.
We show that FORML improves equality of opportunity fairness criteria over existing state-of-the-art reweighting methods by approximately 1% on image classification tasks and by approximately 5% on a face prediction task.
arXiv Detail & Related papers (2022-02-03T17:36:07Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Fairness Constraints in Semi-supervised Learning [56.48626493765908]
We develop a framework for fair semi-supervised learning, which is formulated as an optimization problem.
We theoretically analyze the source of discrimination in semi-supervised learning via bias, variance and noise decomposition.
Our method is able to achieve fair semi-supervised learning, and reach a better trade-off between accuracy and fairness than fair supervised learning.
arXiv Detail & Related papers (2020-09-14T04:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.