論文の概要: On Robustness and Bias Analysis of BERT-based Relation Extraction
- arxiv url: http://arxiv.org/abs/2009.06206v5
- Date: Sat, 25 Dec 2021 08:21:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 12:17:14.136849
- Title: On Robustness and Bias Analysis of BERT-based Relation Extraction
- Title(参考訳): BERTに基づく関係抽出のロバスト性とバイアス解析について
- Authors: Luoqiu Li, Xiang Chen, Hongbin Ye, Zhen Bi, Shumin Deng, Ningyu Zhang,
Huajun Chen
- Abstract要約: 我々は,関係抽出を用いて異なる視点から細調整されたBERTモデルを解析する。
BERTは, ランダム化, 対角的, 対実的テスト, バイアスによって, 頑健性のボトルネックに悩まされている。
- 参考スコア(独自算出の注目度): 40.64969232497321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning pre-trained models have achieved impressive performance on
standard natural language processing benchmarks. However, the resultant model
generalizability remains poorly understood. We do not know, for example, how
excellent performance can lead to the perfection of generalization models. In
this study, we analyze a fine-tuned BERT model from different perspectives
using relation extraction. We also characterize the differences in
generalization techniques according to our proposed improvements. From
empirical experimentation, we find that BERT suffers a bottleneck in terms of
robustness by way of randomizations, adversarial and counterfactual tests, and
biases (i.e., selection and semantic). These findings highlight opportunities
for future improvements. Our open-sourced testbed DiagnoseRE is available in
\url{https://github.com/zjunlp/DiagnoseRE}.
- Abstract(参考訳): 訓練済みの微調整モデルは、標準自然言語処理ベンチマークで素晴らしいパフォーマンスを達成した。
しかし、結果のモデル一般化性はあまり理解されていない。
例えば、いかに優れた性能が一般化モデルの完全化につながるかは、よく分かっていない。
本研究では,関係抽出を用いた細調整BERTモデルの解析を行った。
また,提案する改良により,一般化手法の違いを特徴付ける。
経験的な実験から、BERTはランダム化、対向的および反事実的テスト、偏見(選択と意味)によって頑健さのボトルネックに悩まされていることが分かる。
これらの発見は将来の改善の機会を浮き彫りにしている。
オープンソースのテストベッドDiagnoseREは、 \url{https://github.com/zjunlp/DiagnoseRE}で利用可能です。
関連論文リスト
- On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
視覚と言語の基礎は、様々な自然画像とテキストデータに基づいて事前訓練されており、有望なアプローチとして現れている。
一般化性能を,同じ分布データセット上で微調整した後,事前学習した各種モデルの未確認領域と比較した。
さらに,凍結モデルに対する新しいベイズ不確実性推定法を開発し,分布外データに基づくモデルの性能評価指標として利用した。
論文 参考訳(メタデータ) (2023-11-18T14:52:10Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
一般的な回避策は、二次バイアスモデルに基づいてトレーニング例を再重み付けすることで、堅牢なモデルをトレーニングすることである。
ここでは、バイアスドモデルが機能をショートカットする、という前提がある。
本稿では,主要モデルと偏りのあるモデル属性スコアの類似性を,プロダクト・オブ・エキスパートズ・ロス関数に組み込んだ微調整戦略を提案する。
論文 参考訳(メタデータ) (2023-02-06T15:21:41Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Posterior Differential Regularization with f-divergence for Improving
Model Robustness [95.05725916287376]
クリーン入力とノイズ入力のモデル後部差を規則化する手法に着目する。
後微分正則化を$f$-divergencesの族に一般化する。
実験の結果, 後方微分を$f$-divergenceで正規化することで, モデルロバスト性の向上が期待できることがわかった。
論文 参考訳(メタデータ) (2020-10-23T19:58:01Z) - On the Stability of Fine-tuning BERT: Misconceptions, Explanations, and
Strong Baselines [31.807628937487927]
BERTのような微調整済みの言語モデルは、様々なNLPベンチマークでリーダーボードを独占する一般的なプラクティスとなっている。
以前の文献では、破滅的な忘れ物と微調整データセットの小さなサイズの2つの潜在的な原因が明らかになった。
どちらの仮説も微調整の不安定性を説明できないことを示す。
論文 参考訳(メタデータ) (2020-06-08T19:06:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。