論文の概要: DANCE: Differentiable Accelerator/Network Co-Exploration
- arxiv url: http://arxiv.org/abs/2009.06237v3
- Date: Tue, 16 Feb 2021 04:41:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 11:13:09.991964
- Title: DANCE: Differentiable Accelerator/Network Co-Exploration
- Title(参考訳): DANCE: 異なるアクセラレータ/ネットワークの共同探索
- Authors: Kanghyun Choi, Deokki Hong, Hojae Yoon, Joonsang Yu, Youngsok Kim,
Jinho Lee
- Abstract要約: この研究は、ハードウェアアクセラレーターとネットワークアーキテクチャ設計の共同探索に向けた異なるアプローチを示す。
ハードウェア評価ソフトウェアをニューラルネットワークでモデル化することにより、アクセラレーションアーキテクチャとハードウェアメトリクスの関係は微分可能となる。
提案手法は,既存手法と比較して,精度とハードウェアコストの指標を向上しつつ,比較的短い時間で共同探索を行う。
- 参考スコア(独自算出の注目度): 8.540518473228078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To cope with the ever-increasing computational demand of the DNN execution,
recent neural architecture search (NAS) algorithms consider hardware cost
metrics into account, such as GPU latency. To further pursue a fast, efficient
execution, DNN-specialized hardware accelerators are being designed for
multiple purposes, which far-exceeds the efficiency of the GPUs. However, those
hardware-related metrics have been proven to exhibit non-linear relationships
with the network architectures. Therefore it became a chicken-and-egg problem
to optimize the network against the accelerator, or to optimize the accelerator
against the network. In such circumstances, this work presents DANCE, a
differentiable approach towards the co-exploration of the hardware accelerator
and network architecture design. At the heart of DANCE is a differentiable
evaluator network. By modeling the hardware evaluation software with a neural
network, the relation between the accelerator architecture and the hardware
metrics becomes differentiable, allowing the search to be performed with
backpropagation. Compared to the naive existing approaches, our method performs
co-exploration in a significantly shorter time, while achieving superior
accuracy and hardware cost metrics.
- Abstract(参考訳): 最近のニューラルネットワークサーチ(NAS)アルゴリズムは、DNN実行の計算要求の増加に対処するため、GPUレイテンシなどのハードウェアコストメトリクスを考慮に入れている。
さらに高速で効率的な実行を追求するため、DNN特化ハードウェアアクセラレータは、GPUの効率をはるかに上回る複数の目的のために設計されている。
しかしながら、これらのハードウェア関連メトリクスは、ネットワークアーキテクチャと非線形関係を示すことが証明されている。
そのため、加速器に対してネットワークを最適化するか、ネットワークに対して加速器を最適化するかという問題が発生した。
このような状況下で、ハードウェアアクセラレーターとネットワークアーキテクチャ設計の共同探索に向けた異なるアプローチであるDANCEを提示する。
DANCEの中心は差別化可能な評価ネットワークである。
ハードウェア評価ソフトウェアをニューラルネットワークでモデル化することにより、アクセラレーションアーキテクチャとハードウェアメトリクスの関係を微分可能とし、バックプロパゲーションにより探索を行うことができる。
既存手法と比較すると,提案手法は精度とハードウェアコストの指標を向上しつつ,非常に短時間で共同探索を行う。
関連論文リスト
- HAPM -- Hardware Aware Pruning Method for CNN hardware accelerators in resource constrained devices [44.99833362998488]
本研究はFPGAデバイスに実装可能な汎用ハードウェアアーキテクチャを提案する。
設計の推論速度は、リソース制約の異なるFPGAデバイス上で評価される。
ハードウェア対応プルーニングアルゴリズムは,標準アルゴリズムを用いたネットワークプルーニングに比べて,推論時間45%の顕著な改善を実現していることを示す。
論文 参考訳(メタデータ) (2024-08-26T07:27:12Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
ニューロモルフィックコンピューティング(Neuromorphic Computing)は、アナログメモリの計算によってこの不均衡に直面している新興パラダイムである。
この研究は、異なる学習アルゴリズムがCompute-In-Memoryベースのハードウェアに与える影響を初めて比較し、その逆も行った。
論文 参考訳(メタデータ) (2022-12-29T15:10:59Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
多くのAIタスクにおいて、注意に基づくニューラルネットワークが普及している。
注意機構とフィードフォワードネットワーク(FFN)の使用は、過剰な計算とメモリ資源を必要とする。
本稿では,注目機構とFFNの両方を近似するために,バタフライの分散パターンを統一したハードウェアフレンドリーな変種を提案する。
論文 参考訳(メタデータ) (2022-09-20T09:28:26Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAMベースのインメモリコンピューティングは、領域と電力効率のよい推論の実装において大きな可能性を秘めている。
ReRAMベースのインメモリコンピューティングへの移行は、領域と電力効率のよい推論の実装において大きな可能性を秘めている。
本稿では,最先端のReRAMベースディープニューラルネットワーク(DNN)多コアアクセラレータについて概説する。
論文 参考訳(メタデータ) (2021-09-08T21:11:48Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
ニューラルネットワークとディープラーニングが現在の研究パラダイムに影響を与え始めている。
DSPプロセッサは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成的敵ネットワーク操作を実行することができない。
異なるアルゴリズムは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成対向ネットワークにおける高速なパフォーマンスに適合するDSPプロセッサを設計するために適合している。
論文 参考訳(メタデータ) (2021-06-06T13:23:06Z) - Learning on Hardware: A Tutorial on Neural Network Accelerators and
Co-Processors [0.0]
ディープニューラルネットワーク(dnn)は、複雑なタスクを解決可能にするために、多くのパラメータを考慮に入れることができるという利点がある。
コンピュータビジョンや音声認識では、一般的なアルゴリズムよりも精度が高く、タスクによっては人間の専門家よりも精度が高いものもあります。
近年のDNNの進展に伴い、疾患の診断や自動運転など、多くの応用分野が活用されています。
論文 参考訳(メタデータ) (2021-04-19T12:50:27Z) - Latency-Aware Differentiable Neural Architecture Search [113.35689580508343]
近年、探索コストの低さと検索空間設計の柔軟性から、微分可能なニューラルネットワーク探索法が人気を博している。
しかし、これらの手法はネットワーク最適化の難しさに悩まされており、検索されたネットワークはハードウェアに不便な場合が多い。
本稿では,この問題を最適化に微分可能な遅延損失項を追加することにより,精度とレイテンシのトレードオフをバランス係数で行うことができる。
論文 参考訳(メタデータ) (2020-01-17T15:55:21Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
粗粒構造の内部に新しい次元、きめ細かなプルーニングパターンを導入し、これまで知られていなかった設計空間の点を明らかにした。
きめ細かいプルーニングパターンによって高い精度が実現されているため、コンパイラを使ってハードウェア効率を向上し、保証することがユニークな洞察である。
論文 参考訳(メタデータ) (2020-01-01T04:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。