DANCE: Differentiable Accelerator/Network Co-Exploration
- URL: http://arxiv.org/abs/2009.06237v3
- Date: Tue, 16 Feb 2021 04:41:17 GMT
- Title: DANCE: Differentiable Accelerator/Network Co-Exploration
- Authors: Kanghyun Choi, Deokki Hong, Hojae Yoon, Joonsang Yu, Youngsok Kim,
Jinho Lee
- Abstract summary: This work presents a differentiable approach towards the co-exploration of the hardware accelerator and network architecture design.
By modeling the hardware evaluation software with a neural network, the relation between the accelerator architecture and the hardware metrics becomes differentiable.
Compared to the naive existing approaches, our method performs co-exploration in a significantly shorter time, while achieving superior accuracy and hardware cost metrics.
- Score: 8.540518473228078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To cope with the ever-increasing computational demand of the DNN execution,
recent neural architecture search (NAS) algorithms consider hardware cost
metrics into account, such as GPU latency. To further pursue a fast, efficient
execution, DNN-specialized hardware accelerators are being designed for
multiple purposes, which far-exceeds the efficiency of the GPUs. However, those
hardware-related metrics have been proven to exhibit non-linear relationships
with the network architectures. Therefore it became a chicken-and-egg problem
to optimize the network against the accelerator, or to optimize the accelerator
against the network. In such circumstances, this work presents DANCE, a
differentiable approach towards the co-exploration of the hardware accelerator
and network architecture design. At the heart of DANCE is a differentiable
evaluator network. By modeling the hardware evaluation software with a neural
network, the relation between the accelerator architecture and the hardware
metrics becomes differentiable, allowing the search to be performed with
backpropagation. Compared to the naive existing approaches, our method performs
co-exploration in a significantly shorter time, while achieving superior
accuracy and hardware cost metrics.
Related papers
- HAPM -- Hardware Aware Pruning Method for CNN hardware accelerators in resource constrained devices [44.99833362998488]
The present work proposes a generic hardware architecture ready to be implemented on FPGA devices.
The inference speed of the design is evaluated over different resource constrained FPGA devices.
We demonstrate that our hardware-aware pruning algorithm achieves a remarkable improvement of a 45 % in inference time compared to a network pruned using the standard algorithm.
arXiv Detail & Related papers (2024-08-26T07:27:12Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
Neuromorphic computing is an emerging paradigm that confronts this imbalance by computations directly in analog memories.
This work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa.
arXiv Detail & Related papers (2022-12-29T15:10:59Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
Deep neural network (DNN) latency characterization is a time-consuming process.
We propose MAPLE-X which extends MAPLE by incorporating explicit prior knowledge of hardware devices and DNN architecture latency.
arXiv Detail & Related papers (2022-05-25T11:08:20Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
The shift towards ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
In this survey, we review the state-of-the-art ReRAM-based Deep Neural Networks (DNNs) many-core accelerators.
arXiv Detail & Related papers (2021-09-08T21:11:48Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
Neural network and deep learning has been started to impact the present research paradigm.
DSP processors are incapable of performing neural network, activation function, convolutional neural network and generative adversarial network operations.
Different algorithms have been adapted to design a DSP processor compatible for fast performance in neural network, activation function, convolutional neural network and generative adversarial network.
arXiv Detail & Related papers (2021-06-06T13:23:06Z) - Learning on Hardware: A Tutorial on Neural Network Accelerators and
Co-Processors [0.0]
Deep neural networks (DNNs) have the advantage that they can take into account a large number of parameters, which enables them to solve complex tasks.
In computer vision and speech recognition, they have a better accuracy than common algorithms, and in some tasks, they boast an even higher accuracy than human experts.
With the progress of DNNs in recent years, many other fields of application such as diagnosis of diseases and autonomous driving are taking advantage of them.
arXiv Detail & Related papers (2021-04-19T12:50:27Z) - Latency-Aware Differentiable Neural Architecture Search [113.35689580508343]
Differentiable neural architecture search methods became popular in recent years, mainly due to their low search costs and flexibility in designing the search space.
However, these methods suffer the difficulty in optimizing network, so that the searched network is often unfriendly to hardware.
This paper deals with this problem by adding a differentiable latency loss term into optimization, so that the search process can tradeoff between accuracy and latency with a balancing coefficient.
arXiv Detail & Related papers (2020-01-17T15:55:21Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.