Reservoir Memory Machines as Neural Computers
- URL: http://arxiv.org/abs/2009.06342v2
- Date: Mon, 19 Jul 2021 08:57:42 GMT
- Title: Reservoir Memory Machines as Neural Computers
- Authors: Benjamin Paa{\ss}en and Alexander Schulz and Terrence C. Stewart and
Barbara Hammer
- Abstract summary: Differentiable neural computers extend artificial neural networks with an explicit memory without interference.
We achieve some of the computational capabilities of differentiable neural computers with a model that can be trained very efficiently.
- Score: 70.5993855765376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentiable neural computers extend artificial neural networks with an
explicit memory without interference, thus enabling the model to perform
classic computation tasks such as graph traversal. However, such models are
difficult to train, requiring long training times and large datasets. In this
work, we achieve some of the computational capabilities of differentiable
neural computers with a model that can be trained very efficiently, namely an
echo state network with an explicit memory without interference. This extension
enables echo state networks to recognize all regular languages, including those
that contractive echo state networks provably can not recognize. Further, we
demonstrate experimentally that our model performs comparably to its
fully-trained deep version on several typical benchmark tasks for
differentiable neural computers.
Related papers
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Spiking representation learning for associative memories [0.0]
We introduce a novel artificial spiking neural network (SNN) that performs unsupervised representation learning and associative memory operations.
The architecture of our model derives from the neocortical columnar organization and combines feedforward projections for learning hidden representations and recurrent projections for forming associative memories.
arXiv Detail & Related papers (2024-06-05T08:30:11Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Recurrent neural networks that generalize from examples and optimize by
dreaming [0.0]
We introduce a generalized Hopfield network where pairwise couplings between neurons are built according to Hebb's prescription for on-line learning.
We let the network experience solely a dataset made of a sample of noisy examples for each pattern.
Remarkably, the sleeping mechanisms always significantly reduce the dataset size required to correctly generalize.
arXiv Detail & Related papers (2022-04-17T08:40:54Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Creating Powerful and Interpretable Models withRegression Networks [2.2049183478692584]
We propose a novel architecture, Regression Networks, which combines the power of neural networks with the understandability of regression analysis.
We demonstrate that the models exceed the state-of-the-art performance of interpretable models on several benchmark datasets.
arXiv Detail & Related papers (2021-07-30T03:37:00Z) - Reservoir Stack Machines [77.12475691708838]
Memory-augmented neural networks equip a recurrent neural network with an explicit memory to support tasks that require information storage.
We introduce the reservoir stack machine, a model which can provably recognize all deterministic context-free languages.
Our results show that the reservoir stack machine achieves zero error, even on test sequences longer than the training data.
arXiv Detail & Related papers (2021-05-04T16:50:40Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.