Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks
- URL: http://arxiv.org/abs/2406.04733v1
- Date: Fri, 7 Jun 2024 08:32:30 GMT
- Title: Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks
- Authors: Naresh Ravichandran, Anders Lansner, Pawel Herman,
- Abstract summary: We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Neural networks that can capture key principles underlying brain computation offer exciting new opportunities for developing artificial intelligence and brain-like computing algorithms. Such networks remain biologically plausible while leveraging localized forms of synaptic learning rules and modular network architecture found in the neocortex. Compared to backprop-driven deep learning approches, they provide more suitable models for deploying on neuromorphic hardware and have greater potential for scalability on large-scale computing clusters. The development of such brain-like neural networks depends on having a learning procedure that can build effective internal representations from data. In this work, we introduce and evaluate a brain-like neural network model capable of unsupervised representation learning. It builds on the Bayesian Confidence Propagation Neural Network (BCPNN), which has earlier been implemented as abstract as well as biophyscially detailed recurrent attractor neural networks explaining various cortical associative memory phenomena. Here we developed a feedforward BCPNN model to perform representation learning by incorporating a range of brain-like attributes derived from neocortical circuits such as cortical columns, divisive normalization, Hebbian synaptic plasticity, structural plasticity, sparse activity, and sparse patchy connectivity. The model was tested on a diverse set of popular machine learning benchmarks: grayscale images (MNIST, Fashion-MNIST), RGB natural images (SVHN, CIFAR-10), QSAR (MUV, HIV), and malware detection (EMBER). The performance of the model when using a linear classifier to predict the class labels fared competitively with conventional multi-layer perceptrons and other state-of-the-art brain-like neural networks.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Spiking representation learning for associative memories [0.0]
We introduce a novel artificial spiking neural network (SNN) that performs unsupervised representation learning and associative memory operations.
The architecture of our model derives from the neocortical columnar organization and combines feedforward projections for learning hidden representations and recurrent projections for forming associative memories.
arXiv Detail & Related papers (2024-06-05T08:30:11Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Memory-enriched computation and learning in spiking neural networks
through Hebbian plasticity [9.453554184019108]
Hebbian plasticity is believed to play a pivotal role in biological memory.
We introduce a novel spiking neural network architecture that is enriched by Hebbian synaptic plasticity.
We show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities.
arXiv Detail & Related papers (2022-05-23T12:48:37Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Feature visualization for convolutional neural network models trained on
neuroimaging data [0.0]
We show for the first time results using feature visualization of convolutional neural networks (CNNs)
We have trained CNNs for different tasks including sex classification and artificial lesion classification based on structural magnetic resonance imaging (MRI) data.
The resulting images reveal the learned concepts of the artificial lesions, including their shapes, but remain hard to interpret for abstract features in the sex classification task.
arXiv Detail & Related papers (2022-03-24T15:24:38Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
through Regularization [9.34612743192798]
Spiking neural networks are a promising approach towards next-generation models of the brain in computational neuroscience.
We apply end-to-end learning with membrane potential-based backpropagation to a spiking convolutional auto-encoder.
We show that applying regularization on membrane potential and spiking output successfully avoids both dead and bursting neurons.
arXiv Detail & Related papers (2021-09-22T21:27:40Z) - A multi-agent model for growing spiking neural networks [0.0]
This project has explored rules for growing the connections between the neurons in Spiking Neural Networks as a learning mechanism.
Results in a simulation environment showed that for a given set of parameters it is possible to reach topologies that reproduce the tested functions.
This project also opens the door to the usage of techniques like genetic algorithms for obtaining the best suited values for the model parameters.
arXiv Detail & Related papers (2020-09-21T15:11:29Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.