論文の概要: Comprehensive Comparison of Deep Learning Models for Lung and COVID-19
Lesion Segmentation in CT scans
- arxiv url: http://arxiv.org/abs/2009.06412v7
- Date: Mon, 13 Nov 2023 18:22:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 00:49:53.846554
- Title: Comprehensive Comparison of Deep Learning Models for Lung and COVID-19
Lesion Segmentation in CT scans
- Title(参考訳): CTスキャンによる肺・COVID-19病変の深層学習モデルの総合的比較
- Authors: Paschalis Bizopoulos, Nicholas Vretos and Petros Daras
- Abstract要約: 本稿では,CT(Computerized Tomography)スキャンにおいて,肺の深層学習モデルとCOVID-19病変のセグメンテーションを比較した。
4つのDLアーキテクチャ(Unet, Linknet, FPN, PSPNet)と25のランダムおよび事前訓練エンコーダを組み合わせて200の試験モデルを構築する。
肺の分節, 病変の分節, 病変の分節の3つの実験を, オリジナルの肺マスクを用いて行った。
- 参考スコア(独自算出の注目度): 11.024688703207627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently there has been an explosion in the use of Deep Learning (DL) methods
for medical image segmentation. However the field's reliability is hindered by
the lack of a common base of reference for accuracy/performance evaluation and
the fact that previous research uses different datasets for evaluation. In this
paper, an extensive comparison of DL models for lung and COVID-19 lesion
segmentation in Computerized Tomography (CT) scans is presented, which can also
be used as a benchmark for testing medical image segmentation models. Four DL
architectures (Unet, Linknet, FPN, PSPNet) are combined with 25 randomly
initialized and pretrained encoders (variations of VGG, DenseNet, ResNet,
ResNext, DPN, MobileNet, Xception, Inception-v4, EfficientNet), to construct
200 tested models. Three experimental setups are conducted for lung
segmentation, lesion segmentation and lesion segmentation using the original
lung masks. A public COVID-19 dataset with 100 CT scan images (80 for train, 20
for validation) is used for training/validation and a different public dataset
consisting of 829 images from 9 CT scan volumes for testing. Multiple findings
are provided including the best architecture-encoder models for each experiment
as well as mean Dice results for each experiment, architecture and encoder
independently. Finally, the upper bounds improvements when using lung masks as
a preprocessing step or when using pretrained models are quantified. The source
code and 600 pretrained models for the three experiments are provided, suitable
for fine-tuning in experimental setups without GPU capabilities.
- Abstract(参考訳): 近年,医学画像分割におけるdeep learning (dl) 法の利用が爆発的に増加している。
しかし、フィールドの信頼性は、精度/性能評価のための共通基準の欠如と、以前の研究が評価に異なるデータセットを使用しているという事実によって妨げられている。
本稿では,CT(Computerized Tomography)スキャンにおける肺のDLモデルとCOVID-19の病変セグメンテーションの広範な比較を行い,医療画像セグメンテーションモデルのベンチマークとして使用することができる。
4つのDLアーキテクチャ(Unet, Linknet, FPN, PSPNet)と25のランダム初期化および事前訓練エンコーダ(VGG, DenseNet, ResNet, ResNext, DPN, MobileNet, Xception, Inception-v4, EfficientNet)を組み合わせて200の試験モデルを構築する。
肺の分節, 病変の分節, 病変の分節の3つの実験を, オリジナルの肺マスクを用いて行った。
トレーニング/バリデーションには100個のCTスキャンイメージ(トレーニングには80、バリデーションには20、テストには9個のCTスキャンボリュームから829個のイメージで構成される公開データセットが使用される。
実験毎に最適なアーキテクチャエンコーダモデルと、実験、アーキテクチャ、エンコーダごとに平均dice結果を含む複数の調査結果が提供されている。
最後に、前処理ステップとして肺マスクを使用する場合や、事前訓練されたモデルを使用する場合の上限を定量化する。
3つの実験のためのソースコードと600の事前学習されたモデルを提供し、gpu能力のない実験セットアップの微調整に適している。
関連論文リスト
- CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios [53.94122089629544]
我々は,CT-GLIP(Grounded Language- Image Pretraining with CT scans)を導入する。
本手法は,104臓器にわたる17,702症例を対象に,44,011例の臓器レベルの視覚テキストペアからなるマルチモーダルCTデータセットを用いて訓練し,自然言語を用いて臓器と異常をゼロショットで識別できることを実証した。
論文 参考訳(メタデータ) (2024-04-23T17:59:01Z) - One Model to Rule them All: Towards Universal Segmentation for Medical Images with Text Prompts [62.55349777609194]
我々は、SATと呼ばれるテキストプロンプトによって駆動される放射線学的スキャンにおいて、任意のセグメンテーションを可能にするモデルを構築することを目指している。
トレーニングのために、最大かつ最も包括的なセグメンテーションデータセットを構築します。
我々はSAT-Nano(110Mパラメータ)とSAT-Pro(447Mパラメータ)をトレーニングし、データセット/サブセット毎にトレーニングされた72の専門家nnU-Netに匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-28T18:16:00Z) - CT-xCOV: a CT-scan based Explainable Framework for COVid-19 diagnosis [6.2997667081978825]
CT-xCOVは、Deep Learning(DL)をCTスキャンに用いた新型コロナウイルス診断のための説明可能なフレームワークである。
肺のセグメンテーションでは、よく知られたU-Netモデルを使用し、COVID-19検出では、3つの異なるCNNアーキテクチャを比較した。
視覚的説明のために、我々は3つの異なるXAI技術、すなわちGrad-Cam、Integrated Gradient (IG)、LIMEを適用した。
論文 参考訳(メタデータ) (2023-11-24T13:14:10Z) - Evaluating Generalizability of Deep Learning Models Using
Indian-COVID-19 CT Dataset [5.398550081886242]
臨床環境でのCTスキャン画像の自動処理のためのma-chine learning (ML)アプローチは、公開されているCOVID-19データの限定的で偏りのあるサブセットに基づいて訓練される。
これにより、トレーニング中にモデルに見られない外部データセット上で、これらのモデルの一般化性に関する懸念が持ち上がった。
これらの問題に対処するために、この研究では、最も大きなパブリックリポジトリの1つから得られた確認されたCOVID-19データからのCTスキャン画像を用いて、機械学習モデルのトレーニングと内部バリデーションにCOVIDx CT 2Aを使用した。
論文 参考訳(メタデータ) (2022-12-28T16:23:18Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - Robust Automated Framework for COVID-19 Disease Identification from a
Multicenter Dataset of Chest CT Scans [27.29759500174996]
提案モデルでは,特定の走査プロトコルを用いて,1つのイメージングセンタのみから取得した比較的小さなデータセットに基づいてトレーニングを行った。
また、列車とテストセット間のデータシフトに対処するため、教師なしアプローチでモデルを更新できることを示した。
実験の結果,提案手法は全テストセットに対して96.15%の精度で良好に動作することがわかった。
論文 参考訳(メタデータ) (2021-09-19T22:32:55Z) - 3D U-Net for segmentation of COVID-19 associated pulmonary infiltrates
using transfer learning: State-of-the-art results on affordable hardware [0.0]
肺浸潤物はCOVID-19の重症度を評価するのに役立ちますが、手動セグメンテーションは労働力と時間集約的です。
神経ネットワークを用いて肺浸潤を分断すると、このタスクは自動化される。
限られたハードウェアと短時間で最先端のセグメンテーションモデルをトレーニングするためのトランスファーラーニングの使用方法に関するソリューションを開発し、テストしました。
論文 参考訳(メタデータ) (2021-01-25T09:37:32Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Intra-model Variability in COVID-19 Classification Using Chest X-ray
Images [0.0]
12の共通ディープラーニングアーキテクチャにおいて,胸部X線におけるCOVID-19検出のためのベースライン性能指標と変数の定量化を行う。
最高のパフォーマンスモデルでは、新型コロナウイルスをホールドアウトセットで検出する際の偽陰性率は20点中3点である。
論文 参考訳(メタデータ) (2020-04-30T21:20:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。