Unsupervised Domain Adaptation by Uncertain Feature Alignment
- URL: http://arxiv.org/abs/2009.06483v1
- Date: Mon, 14 Sep 2020 14:42:41 GMT
- Title: Unsupervised Domain Adaptation by Uncertain Feature Alignment
- Authors: Tobias Ringwald, Rainer Stiefelhagen
- Abstract summary: Unsupervised domain adaptation (UDA) deals with the adaptation of models from a given source domain with labeled data to an unlabeled target domain.
In this paper, we utilize the inherent prediction uncertainty of a model to accomplish the domain adaptation task.
- Score: 29.402619219254074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) deals with the adaptation of models from
a given source domain with labeled data to an unlabeled target domain. In this
paper, we utilize the inherent prediction uncertainty of a model to accomplish
the domain adaptation task. The uncertainty is measured by Monte-Carlo dropout
and used for our proposed Uncertainty-based Filtering and Feature Alignment
(UFAL) that combines an Uncertain Feature Loss (UFL) function and an
Uncertainty-Based Filtering (UBF) approach for alignment of features in
Euclidean space. Our method surpasses recently proposed architectures and
achieves state-of-the-art results on multiple challenging datasets. Code is
available on the project website.
Related papers
- Towards Source-free Domain Adaptive Semantic Segmentation via Importance-aware and Prototype-contrast Learning [26.544837987747766]
We propose an end-to-end source-free domain adaptation semantic segmentation method via Importance-Aware and Prototype-Contrast learning.
The proposed IAPC framework effectively extracts domain-invariant knowledge from the well-trained source model and learns domain-specific knowledge from the unlabeled target domain.
arXiv Detail & Related papers (2023-06-02T15:09:19Z) - Unsupervised Domain Adaptation Based on the Predictive Uncertainty of
Models [1.6498361958317636]
Unsupervised domain adaptation (UDA) aims to improve the prediction performance in the target domain under distribution shifts from the source domain.
We present a novel UDA method that learns domain-invariant features that minimize the domain divergence.
arXiv Detail & Related papers (2022-11-16T12:23:32Z) - Feature Alignment by Uncertainty and Self-Training for Source-Free
Unsupervised Domain Adaptation [1.6498361958317636]
Most unsupervised domain adaptation (UDA) methods assume that labeled source images are available during model adaptation.
We propose a source-free UDA method that uses only a pre-trained source model and unlabeled target images.
Our method captures the aleatoric uncertainty by incorporating data augmentation and trains the feature generator with two consistency objectives.
arXiv Detail & Related papers (2022-08-31T14:28:36Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Learning Feature Decomposition for Domain Adaptive Monocular Depth
Estimation [51.15061013818216]
Supervised approaches have led to great success with the advance of deep learning, but they rely on large quantities of ground-truth depth annotations.
Unsupervised domain adaptation (UDA) transfers knowledge from labeled source data to unlabeled target data, so as to relax the constraint of supervised learning.
We propose a novel UDA method for MDE, referred to as Learning Feature Decomposition for Adaptation (LFDA), which learns to decompose the feature space into content and style components.
arXiv Detail & Related papers (2022-07-30T08:05:35Z) - Learning Unbiased Transferability for Domain Adaptation by Uncertainty
Modeling [107.24387363079629]
Domain adaptation aims to transfer knowledge from a labeled source domain to an unlabeled or a less labeled but related target domain.
Due to the imbalance between the amount of annotated data in the source and target domains, only the target distribution is aligned to the source domain.
We propose a non-intrusive Unbiased Transferability Estimation Plug-in (UTEP) by modeling the uncertainty of a discriminator in adversarial-based DA methods to optimize unbiased transfer.
arXiv Detail & Related papers (2022-06-02T21:58:54Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
Training models dedicated to semantic segmentation require a large amount of pixel-wise annotated data.
Unsupervised domain adaptation approaches aim at aligning the feature distributions between the labeled source and the unlabeled target data.
Previous works attempted to include human interactions in this process under the form of sparse single-pixel annotations in the target data.
We propose a new domain adaptation framework for semantic segmentation with annotated points via active selection.
arXiv Detail & Related papers (2022-06-01T01:52:28Z) - Certainty Volume Prediction for Unsupervised Domain Adaptation [35.984559137218504]
Unsupervised domain adaptation (UDA) deals with the problem of classifying unlabeled target domain data.
We propose a novel uncertainty-aware domain adaptation setup that models uncertainty as a multivariate Gaussian distribution in feature space.
We evaluate our proposed pipeline on challenging UDA datasets and achieve state-of-the-art results.
arXiv Detail & Related papers (2021-11-03T11:22:55Z) - UBR$^2$S: Uncertainty-Based Resampling and Reweighting Strategy for
Unsupervised Domain Adaptation [35.984559137218504]
Unsupervised domain adaptation (UDA) deals with the adaptation process of a model to an unlabeled target domain.
We propose UBR$2$S - the Uncertainty-Based Resampling and Reweighting Strategy.
arXiv Detail & Related papers (2021-10-22T12:18:40Z) - Open-Set Hypothesis Transfer with Semantic Consistency [99.83813484934177]
We introduce a method that focuses on the semantic consistency under transformation of target data.
Our model first discovers confident predictions and performs classification with pseudo-labels.
As a result, unlabeled data can be classified into discriminative classes coincided with either source classes or unknown classes.
arXiv Detail & Related papers (2020-10-01T10:44:31Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.