論文の概要: Deep Actor-Critic Learning for Distributed Power Control in Wireless
Mobile Networks
- arxiv url: http://arxiv.org/abs/2009.06681v1
- Date: Mon, 14 Sep 2020 18:29:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 12:59:24.421788
- Title: Deep Actor-Critic Learning for Distributed Power Control in Wireless
Mobile Networks
- Title(参考訳): 無線モバイルネットワークにおける分散電力制御のためのDeep Actor-Critic Learning
- Authors: Yasar Sinan Nasir and Dongning Guo
- Abstract要約: 深層強化学習は、教師付きディープラーニングと古典的な最適化に代わるモデルなしの代替手段を提供する。
本稿では,深いアクター・クリティカル・ラーニングの助けを借りて,分散的に実行された連続電力制御アルゴリズムを提案する。
提案した電力制御アルゴリズムを,携帯端末とチャネル条件が急速に変化するタイムスロットシステムに統合する。
- 参考スコア(独自算出の注目度): 5.930707872313038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning offers a model-free alternative to supervised
deep learning and classical optimization for solving the transmit power control
problem in wireless networks. The multi-agent deep reinforcement learning
approach considers each transmitter as an individual learning agent that
determines its transmit power level by observing the local wireless
environment. Following a certain policy, these agents learn to collaboratively
maximize a global objective, e.g., a sum-rate utility function. This
multi-agent scheme is easily scalable and practically applicable to large-scale
cellular networks. In this work, we present a distributively executed
continuous power control algorithm with the help of deep actor-critic learning,
and more specifically, by adapting deep deterministic policy gradient.
Furthermore, we integrate the proposed power control algorithm to a
time-slotted system where devices are mobile and channel conditions change
rapidly. We demonstrate the functionality of the proposed algorithm using
simulation results.
- Abstract(参考訳): deep reinforcement learningは、無線ネットワークにおける送信電力制御問題を解決するために、教師付きディープラーニングのモデルフリーな代替手段と古典的な最適化を提供する。
マルチエージェント深部強化学習手法では,各送信機をローカル無線環境を観察して送信電力レベルを決定する個別学習エージェントとみなす。
特定のポリシーに従って、これらのエージェントは、例えば和値ユーティリティ関数など、グローバルな目的を協調的に最大化することを学ぶ。
このマルチエージェントスキームは容易にスケーラブルで、大規模セルラーネットワークに適用できる。
本研究では,より深いアクター-批判的学習の助けを借りて,分散的に実行される連続電力制御アルゴリズムを提案する。
さらに,提案する電力制御アルゴリズムを,デバイスが移動可能でチャネル状態が急速に変化するタイムスロットシステムに統合する。
シミュレーション結果を用いて,提案アルゴリズムの機能を示す。
関連論文リスト
- Unsupervised Deep Unfolded PGD for Transmit Power Allocation in Wireless
Systems [0.6091702876917281]
本稿では,反復射影勾配(PGD)アルゴリズムをニューラルネットワークの層に深く展開し,ステップサイズパラメータを学習する,単純な低複素性TPCアルゴリズムを提案する。
高密度デバイス間通信(D2D)における性能評価の結果,提案手法は2回以上の繰り返し回数で反復アルゴリズムよりも優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-06-20T19:51:21Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - Distributed-Training-and-Execution Multi-Agent Reinforcement Learning
for Power Control in HetNet [48.96004919910818]
We propose a multi-agent Deep reinforcement learning (MADRL) based power control scheme for the HetNet。
エージェント間の協調を促進するために,MADRLシステムのためのペナルティベースQラーニング(PQL)アルゴリズムを開発した。
このように、エージェントのポリシーは、他のエージェントによってより容易に学習でき、より効率的なコラボレーションプロセスをもたらす。
論文 参考訳(メタデータ) (2022-12-15T17:01:56Z) - Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT
Assignment and Dynamic Resource Allocation in Next-Generation HetNets [21.637440368520487]
本稿では,次世代無線ネットワーク(HetNets)における共同最適無線アクセス技術(RATs)の割り当てと電力割り当てによるコストアウェアダウンリンク総和率の問題について考察する。
本稿では,DeepRAT(DeepRAT)と呼ばれる階層型多エージェント深層強化学習(DRL)フレームワークを提案する。
特に、DeepRATフレームワークは、問題を2つの主要なステージに分解する: 単一エージェントのDeep Q Networkアルゴリズムを実装するRATs-EDs割り当てステージと、マルチエージェントのDeep Deterministic Policy Gradientを利用するパワー割り当てステージである。
論文 参考訳(メタデータ) (2022-02-28T09:49:44Z) - Learning Optimal Antenna Tilt Control Policies: A Contextual Linear
Bandit Approach [65.27783264330711]
セルラーネットワークにおけるアンテナ傾きの制御は、ネットワークのカバレッジとキャパシティの間の効率的なトレードオフに到達するために不可欠である。
既存のデータから最適な傾き制御ポリシーを学習するアルゴリズムを考案する。
従来のルールベースの学習アルゴリズムよりもはるかに少ないデータサンプルを用いて最適な傾き更新ポリシーを作成できることを示す。
論文 参考訳(メタデータ) (2022-01-06T18:24:30Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Scheduling and Power Control for Wireless Multicast Systems via Deep
Reinforcement Learning [33.737301955006345]
無線システムにおけるマルチキャストは、コンテンツ中心ネットワークにおけるユーザ要求の冗長性を利用する方法である。
電力制御と最適スケジューリングは、衰退中の無線マルチキャストネットワークの性能を著しく向上させることができる。
提案手法により, 大規模システムに対して, 電力制御ポリシを学習可能であることを示す。
論文 参考訳(メタデータ) (2020-09-27T15:59:44Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
分散データを収集し、エッジで機械学習を実行するエッジインテリジェンスが提案されている。
本稿では,経験的分類誤差モデルに基づいて無線リソースを割り当てるLCPA法を提案する。
実験の結果,提案したLCPAアルゴリズムは,他のパワーアロケーションアルゴリズムよりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-21T07:02:07Z) - Consensus Multi-Agent Reinforcement Learning for Volt-VAR Control in
Power Distribution Networks [8.472603460083375]
VVC問題を解くために,コンセンサス多エージェント深部強化学習アルゴリズムを提案する。
提案アルゴリズムでは,各エージェントが局所報酬を用いてグループ制御ポリシーを学習することができる。
IEEE分散テストフィードの数値的研究により,提案アルゴリズムは単エージェント強化学習ベンチマークの性能と一致していることがわかった。
論文 参考訳(メタデータ) (2020-07-06T18:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。