Distributed Mirror Descent with Integral Feedback: Asymptotic
Convergence Analysis of Continuous-time Dynamics
- URL: http://arxiv.org/abs/2009.06747v1
- Date: Mon, 14 Sep 2020 21:11:42 GMT
- Title: Distributed Mirror Descent with Integral Feedback: Asymptotic
Convergence Analysis of Continuous-time Dynamics
- Authors: Youbang Sun, Shahin Shahrampour
- Abstract summary: This work addresses distributed optimization, where a network of agents wants to minimize a global strongly convex objective function.
We propose a continuous-time distributed mirror descent that uses purely local information to converge to the global optimum.
- Score: 11.498089180181365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work addresses distributed optimization, where a network of agents wants
to minimize a global strongly convex objective function. The global function
can be written as a sum of local convex functions, each of which is associated
with an agent. We propose a continuous-time distributed mirror descent
algorithm that uses purely local information to converge to the global optimum.
Unlike previous work on distributed mirror descent, we incorporate an integral
feedback in the update, allowing the algorithm to converge with a constant
step-size when discretized. We establish the asymptotic convergence of the
algorithm using Lyapunov stability analysis. We further illustrate numerical
experiments that verify the advantage of adopting integral feedback for
improving the convergence rate of distributed mirror descent.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
This paper studies the convergence performance of divide-and-conquer estimators in the scenario that the target function does not reside in the underlying kernel space.
As a decomposition-based scalable approach, the divide-and-conquer estimators of functional linear regression can substantially reduce the algorithmic complexities in time and memory.
arXiv Detail & Related papers (2022-11-20T12:29:06Z) - Mirror Descent with Relative Smoothness in Measure Spaces, with
application to Sinkhorn and EM [11.007661197604065]
This paper studies the convergence of the mirror descent algorithm in an infinite-dimensional setting.
Applying our result to joint distributions and the Kullback--Leibler divergence, we show that Sinkhorn's primal iterations for optimal transport correspond to a mirror descent.
arXiv Detail & Related papers (2022-06-17T16:19:47Z) - Push--Pull with Device Sampling [8.344476599818826]
We consider decentralized optimization problems in which a number of agents collaborate to minimize the average of their local functions by exchanging over an underlying communication graph.
We propose an algorithm that combines gradient tracking and variance reduction over the entire network.
Our theoretical analysis shows that the algorithm converges linearly, when the local objective functions are strongly convex.
arXiv Detail & Related papers (2022-06-08T18:18:18Z) - Distributed stochastic proximal algorithm with random reshuffling for
non-smooth finite-sum optimization [28.862321453597918]
Non-smooth finite-sum minimization is a fundamental problem in machine learning.
This paper develops a distributed proximal-gradient algorithm with random reshuffling to solve the problem.
arXiv Detail & Related papers (2021-11-06T07:29:55Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - Linear Convergence of Distributed Mirror Descent with Integral Feedback
for Strongly Convex Problems [11.498089180181365]
We study a continuous-time decentralized mirror descent that uses purely local gradient information to converge to the global optimal solution.
We prove that the algorithm indeed achieves (local) exponential convergence.
arXiv Detail & Related papers (2020-11-24T17:27:27Z) - A Multi-Agent Primal-Dual Strategy for Composite Optimization over
Distributed Features [52.856801164425086]
We study multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) coupling function.
arXiv Detail & Related papers (2020-06-15T19:40:24Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes.
We show that value-based methods such as TD($lambda$) and $Q$-Learning have update rules which are contractive in the space of distributions of functions.
arXiv Detail & Related papers (2020-03-27T05:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.